<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
ZHAO Xia, WANG Min, HAO Xian-chao, ZHA Xiang-dong, GAO Ming, MA Ying-che, LIU Kui. Research progress in grain boundary serration in iron/nickel based austenitic polycrystalline alloys[J]. Chinese Journal of Engineering, 2021, 43(10): 1323-1338. doi: 10.13374/j.issn2095-9389.2021.01.05.001
Citation: ZHAO Xia, WANG Min, HAO Xian-chao, ZHA Xiang-dong, GAO Ming, MA Ying-che, LIU Kui. Research progress in grain boundary serration in iron/nickel based austenitic polycrystalline alloys[J]. Chinese Journal of Engineering, 2021, 43(10): 1323-1338. doi: 10.13374/j.issn2095-9389.2021.01.05.001

Research progress in grain boundary serration in iron/nickel based austenitic polycrystalline alloys

doi: 10.13374/j.issn2095-9389.2021.01.05.001
More Information
  • Corresponding author: E-mail: minwang@imr.ac.cn
  • Received Date: 2021-01-05
    Available Online: 2021-09-27
  • Publish Date: 2021-10-12
  • Grain boundaries of high-temperature metallic materials, such as alloys, are often considered weak. At elevated temperatures, the strength of the grain boundary is relatively lower than that of the intragranular areas, and cracks often initially form on the grain boundary and then develop along it, which leads to premature failure and significantly degrades the mechanical performance of the material at high temperature. Therefore, how to optimize the morphology and improve the strength of the grain boundary is key to improving the properties of alloys at high temperatures. A serrated grain boundary is a type of grain boundary with a wave shape evolving from the bending of the flat grain boundary during special heat treatments. For iron/nickel-based austenitic polycrystalline alloys, grain boundary serration has been viewed as an effective method for strengthening their grain boundaries and enhancing their properties. Here, the research progress of serrated grain boundaries was reviewed based on the aspects of formation method, formation mechanism, and their influence on the properties of materials. The methods of formation of serrated grain boundaries for different types of alloys, such as controlled cooling heat treatment, isothermal heat treatment, mechanical heat treatment, and alloying, were summarized. The interactions between the grain boundary and intergranular precipitates, such as M7C3 carbide, M23C6 carbide, and γ′ phase, were discussed in detail to understand the formation mechanism of the serrated grain boundary and how it improving the properties of materials and reveal the driving force of grain boundary migration. In addition, the influences of the serrated grain boundary on the mechanical (rupture, creep, fatigue, and tensile) properties, corrosion properties (hot and stress corrosion), and heat-affected-zone (HAZ) liquefying cracking behavior of different alloys were analyzed. Last, based on the abovementioned details, development directions for future work on serrated grain boundaries were outlined.

     

  • loading
  • [1]
    Latief F H, Hong H U, Blanc T, et al. Influence of chromium content on microstructure and grain boundary serration formation in a ternary Ni?xCr?0.1C model alloy. Mater Chem Phys, 2014, 148(3): 1194 doi: 10.1016/j.matchemphys.2014.09.047
    [2]
    葉銳曾, 陳國良. 論高溫合金中的彎曲晶界——廣泛應用彎曲晶界熱處理工藝. 機械工程材料, 1985, 9(4):1

    Ye R Z, Chen G L. On the zigzag grain boundary in high temperature superalloys. Mater Mech Eng, 1985, 9(4): 1
    [3]
    楊萬鵬, 胡本芙, 劉國權, 等. 高性能鎳基粉末高溫合金中γ'相形態致鋸齒晶界形成機理研究. 材料工程, 2015, 43(6):7 doi: 10.11868/j.issn.1001-4381.2015.06.002

    Yang W P, Hu B F, Liu G Q, et al. Formation mechanism of serrated grain boundary caused by different morphologies of γ' phases in a high-performance nickel-based powder metallurgy superalloy. J Mater Eng, 2015, 43(6): 7 doi: 10.11868/j.issn.1001-4381.2015.06.002
    [4]
    Koul A K, Gessinger G H. On the mechanism of serrated grain boundary formation in Ni-based superalloys. Acta Metall, 1983, 31(7): 1061 doi: 10.1016/0001-6160(83)90202-X
    [5]
    Wu X J, Koul A K. Grain boundary sliding at serrated grain boundaries. Adv Perform Mater, 1997, 4(4): 409 doi: 10.1023/A:1008648628507
    [6]
    Henry M F, Yoo Y S, Yoon D Y, et al. The dendritic growth of γ' precipitates and grain. Metall Trans A, 1993, 24(8): 1733 doi: 10.1007/BF02657848
    [7]
    Danflou H L, Macia M, Sanders T H, et al. Mechanisms of formation of serrated grain boundaries in nickel base superalloys // Superalloys 1996 (Eighth International Symposium). Atlanta, 1996: 119
    [8]
    Mitchell R J, Li H Y, Huang Z W. On the formation of serrated grain boundaries and fan type structures in an advanced polycrystalline nickel-base superalloy. J Mater Process Technol, 2009, 209(2): 1011 doi: 10.1016/j.jmatprotec.2008.03.008
    [9]
    Lu X D, Deng Q, Du J H, et al. Effect of slow cooling treatment on microstructure of difficult deformation GH4742 superalloy. J Alloys Compd, 2009, 477(1-2): 100 doi: 10.1016/j.jallcom.2008.10.088
    [10]
    Lu X D, Du J H, Deng Q, et al. Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy. J Alloys Compd, 2009, 486(1-2): 195 doi: 10.1016/j.jallcom.2009.07.020
    [11]
    Jiang L, Hu R, Kou H C, et al. The effect of M23C6 carbides on the formation of grain boundary serrations in a wrought Ni-based superalloy. Mater Sci Eng A, 2012, 536: 37 doi: 10.1016/j.msea.2011.11.060
    [12]
    Tang Y T, Karamched P, Liu J L, et al. Grain boundary serration in nickel alloy inconel 600: Quantification and mechanisms. Acta Mater, 2019, 181: 352 doi: 10.1016/j.actamat.2019.09.037
    [13]
    Hong H U, Kim I S, Choi B G, et al. On the mechanism of serrated grain boundary formation in Ni-based superalloys with low γ' volume fraction // Superalloys 2012. Hoboken, 2012: 53
    [14]
    Hong H U, Nam S W. Improvement of creep-fatigue life by the modification of carbide characteristics through grain boundary serration in an AISI 304 stainless steel. J Mater Sci, 2003, 38(7): 1535 doi: 10.1023/A:1022989002179
    [15]
    Hong H U, Jeong H W, Kim I S, et al. A study on the formation of serrated grain boundaries and its applications in nimonic 263. Mater Sci Forum, 2010, 638-642: 2245 doi: 10.4028/www.scientific.net/MSF.638-642.2245
    [16]
    Kim K J, Ginsztler J, Nam S W. The role of carbon on the occurrence of grain boundary serration in an AISI 316 stainless steel during aging heat treatment. Mater Lett, 2005, 59(11): 1439 doi: 10.1016/j.matlet.2004.12.050
    [17]
    Yeh A C, Lu K W, Kuo C M, et al. Effect of serrated grain boundaries on the creep property of Inconel 718 superalloy. Mater Sci Eng A, 2011, 530: 525 doi: 10.1016/j.msea.2011.10.014
    [18]
    葛占英, 于文秀, 楊蓮隱, 等. 奧氏體型高溫合金彎曲晶界普遍性的研究. 北京鋼鐵學院學報, 1986, 8(增刊1): 51

    Ge Z Y, Yu W X, Yang L Y, et al. Research of zig-zag grain boundary universality in austenitic superalloys. J Beijing Univ Iron Steel Technol, 1986, 8(Suppl 1): 51
    [19]
    Lee J W, Terner M, Hong H U, et al. A new observation of strain-induced grain boundary serration and its underlying mechanism in a Ni?20Cr binary model alloy. Mater Charact, 2018, 135: 146 doi: 10.1016/j.matchar.2017.11.047
    [20]
    Jeong C Y, Kim K J, Hong H U, et al. Effects of aging temperature and grain size on the formation of serrated grain boundaries in an AISI 316 stainless steel. Mater Chem Phys, 2013, 139(1): 27 doi: 10.1016/j.matchemphys.2012.11.021
    [21]
    Hong H U, Nam S W. The occurrence of grain boundary serration and its effect on the M23C6 carbide characteristics in an AISI 316 stainless steel. Mater Sci Eng A, 2002, 332(1-2): 255 doi: 10.1016/S0921-5093(01)01754-3
    [22]
    Kim K J, Hong H U, Nam S W. A study on the mechanism of serrated grain boundary formation in an austenitic stainless steel. Mater Chem Phys, 2011, 126(3): 480 doi: 10.1016/j.matchemphys.2010.12.025
    [23]
    譚菊芬, 姜淑榮, 田世藩. GH220合金彎曲晶界熱處理制度的研究. 航空材料, 1982, 10(增刊1): 19

    Tan J F, Jang S R, Tian S F. Researches on wave grain boundaries heat treatment processes for gh220 alloy. J Aeronaut Mater, 1982, 10(Suppl 1): 19
    [24]
    葛占英, 葉銳曾, 孫金貴, 等. 合金元素對GH220合金彎曲晶界的影響. 北京鋼鐵學院學報, 1986, 8(增刊1): 61

    Ge Z Y, Ye R Z, Sun J G, et al. Effect of alloying elements on zig-zag grain boundary in superalloy GH220. J Beijing Univ Iron Steel Technol, 1986, 8(Suppl 1): 61
    [25]
    徐志超, 葉銳曾, 王迪, 等. 在10Cr?15Co?Ni基高溫合金中彎曲晶界形成的研究. 北京鋼鐵學院學報, 1982, 4(增刊1): 78

    Xu Z C, Ye R Z, Wang D, et al. Study on the formation of zig-zag grain boundary in 10Cr?15Co?Ni Ni-based superalloy. J Beijing Univ Iron Steel Technol, 1982, 4(Suppl 1): 78
    [26]
    張旭. 微合金元素鈮對奧氏體基焊縫金屬組織與性能的影響[學位論文]. 合肥: 中國科學技術大學, 2019

    Zhang X. Effect of Microalloyed Element Niobium on the Microstructure and Properties of Austenite-Based Weld Metals [Dissertation]. Hefei: University of Science and Technology of China, 2019
    [27]
    葉銳曾, 徐志超, 葛占英, 等. 鎳基變形高溫合金中的彎曲晶界形成的機制. 北京鋼鐵學院學報, 1985, 7(2):29

    Ye R Z, Xu Z C, Ge Z Y, et al. Mechanism of ziggag grain boundary formation in wrought nickelbase superalloys. J Beijing Univ Iron Steel Technol, 1985, 7(2): 29
    [28]
    Lim Y S, Kim D J, Hwang S S, et al. M23C6 precipitation behavior and grain boundary serration in Ni-based Alloy 690. Mater Charact, 2014, 96: 28 doi: 10.1016/j.matchar.2014.07.008
    [29]
    山崎道夫. 高炭素18Cr?12Niステンレス鋼のクリープ破斷強さにおよぼす2段溶體化処理の影響. 日本金屬學會誌, 1966, 30:1032 doi: 10.2320/jinstmet1952.30.11_1032

    Yamazaki M. The effect of two-step solution treatment on the creep rupture properties of a high carbon 18Cr-12Ni stainless steel. J Jpn Inst Met, 1966, 30: 1032 doi: 10.2320/jinstmet1952.30.11_1032
    [30]
    汪林, 葉銳曾, 周守禮, 等. GH220合金中晶界針狀碳化物的成因. 北京科技大學學報, 1990, 12(3):243

    Wang L, Ye R Z, Zhou S L, et al. Research on formation rule of G.B. plate-like carbide in GH220 Ni-base wrought superalloy. J Univ Sci Technol Beijing, 1990, 12(3): 243
    [31]
    李慧, 夏爽, 周邦新, 等. 鎳基690合金中晶界碳化物析出的研究. 金屬學報, 2011, 47(7):853

    Li H, Xia S, Zhou B X, et al. Study of carbide precipitation at grain boundary in nickel base alloy 690. Acta Metall Sinica, 2011, 47(7): 853
    [32]
    仲增墉, 馬培立, 陳淦生, 等. 高合金化鎳基變形高溫合金中彎曲晶界的初步研究. 金屬學報, 1983, 19(3):54

    Zhong Z Y, Ma P L, Chen G S, et al. A study of zigzag grain boundary in high alloyed wrought nickel-base superalloy. Acta Met Sinica, 1983, 19(3): 54
    [33]
    Koul A K, Thamburaj R. Serrated grain boundary formation potential of Ni-based superalloys and its implications. Metall Trans A, 1985, 16(1): 17 doi: 10.1007/BF02656707
    [34]
    Bhuyan P, Reddy K V, Pradhan S K, et al. A potential insight into the serration behaviour of Σ3n (n≤3) boundaries in Alloy 617. Mater Chem Phys, 2020, 248: 122919 doi: 10.1016/j.matchemphys.2020.122919
    [35]
    葉銳曾, 葛占英, 王曰毅, 等. 彎曲晶界對10Cr?15Co?Ni基變形高溫合金蠕變斷裂的影響. 金屬學報, 1984, 20(1):34

    Ye R Z, Ge Z Y, Wang Y Y, et al. Effect of zigzag grain boundary on creep rupture of a 10Cr?15Co?Ni?BASE wrought superalloy. Acta Metall Sinica, 1984, 20(1): 34
    [36]
    向朝進. 彎曲晶界在 Ni?Cr?W?Mo 合金蠕變斷裂中的行為研究. 四川工業學院學報, 1997, 16(4):15

    Xiang C J. Investigation into curved crystal boundary beheawiour of Ni?Cr?W?Mo alloy under creep fracture. J Sichuan Inst Technol, 1997, 16(4): 15
    [37]
    張亞平, 王曰毅, 李志云, 等. 彎曲晶界對GH49合金蠕變過程中位錯組態的影響. 重慶大學學報(自然科學版), 1988, 11(1):97

    Zhang Y P, Wang Y Y, Li Z Y, et al. The effect of zigzag grain boundaries on dislocation configurations of GH49 alloy in creep process. J Chongqing Univ Nat Sci Ed, 1988, 11(1): 97
    [38]
    張亞平, 羅虹, 王曰毅, 等. GH49合金在蠕變斷裂過程中彎曲晶界的作用. 重慶大學學報(自然科學版), 1984, 7(3):141

    Zhang Y P, Luo H, Wang Y Y, et al. The effect of zigzag grain boundaries on process of creep and fracture in GH49 alloy. J Chongqing Univ Nat Sci Ed, 1984, 7(3): 141
    [39]
    Tanaka M, Miyagawa O, Sakaki T, et al. Creep rupture strength and grain-boundary sliding in austenitic 21Cr?4Ni?9Mn steels with serrated grain boundaries. J Mater Sci, 1988, 23(2): 621 doi: 10.1007/BF01174696
    [40]
    Tanaka M, Iizuka H, Ashihara F. Effects of serrated grain boundaries on the crack growth in austenitic heat-resisting steels during high-temperature creep. J Mater Sci, 1988, 23(11): 3827 doi: 10.1007/BF01106799
    [41]
    Tang Y T, Wilkinson A J, Reed R C. Grain boundary serration in nickel-based superalloy inconel 600: Generation and effects on mechanical behavior. Metall Mater Trans A, 2018, 49(9): 4324 doi: 10.1007/s11661-018-4671-7
    [42]
    Larson J M, Floreen S. Metallurgical factors affecting the crack growth resistance of a superalloy. Metall Trans A, 1977, 8(1): 51 doi: 10.1007/BF02677263
    [43]
    Gifkins R C. Grain-boundary sliding and its accommodation during creep and superplasticity. Metall Trans A, 1976, 7(8): 1225 doi: 10.1007/BF02656607
    [44]
    Raj R, Ashby M F. On grain boundary sliding and diffusional creep. Metall Trans, 1971, 2(4): 1113 doi: 10.1007/BF02664244
    [45]
    葛占英, 葉銳曾, 孫金貴, 等. 彎曲晶界對GH220合金疲勞性能的影響. 北京鋼鐵學院學報, 1986, 8(增刊1): 69

    Ge Z Y, Ye R Z, Sun J G, et al. Effect of zig-zag grain boundary on fatigue property of superalloy GH220. J Beijing Univ Iron Steel Technol, 1986, 8(Suppl 1): 69
    [46]
    Tanaka M. Evolution of grain-boundary serration in fatigue. J Mater Sci Lett, 1995, 14(6): 381
    [47]
    田少鯤, 李靜媛, 張俊龍, 等. Sc對7056鋁合金組織和性能的影響. 工程科學學報, 2019, 41(10):1298

    Tian S K, Li J Y, Zhang J L, et al. Effect of Sc on the microstructure and properties of 7056 aluminum alloy. Chin J Eng, 2019, 41(10): 1298
    [48]
    吳宗河, 祁梓宸, 許朋朋, 等. 熱軋7075/AZ31B復合板的顯微組織及結合性能. 工程科學學報, 2020, 42(5):620

    Wu Z H, Qi Z C, Xu P P, et al. Microstructure and bonding properties of hot-rolled 7075/AZ31B clad sheets. Chin J Eng, 2020, 42(5): 620
    [49]
    王宇, 熊柏青, 李志輝, 等. Al?Zn?Mg?Cu?Zr?(Sc)合金攪拌摩擦焊接頭組織和性能. 工程科學學報, 2020, 42(5):612

    Wang Y, Xiong B Q, Li Z H, et al. Microstructure and properties of friction stir welded joints for Al?Zn?Mg?Cu?Zr?(Sc)alloys. Chin J Eng, 2020, 42(5): 612
    [50]
    章小峰, 萬亞雄, 武學俊, 等. Fe?Mn?(Al)?C高強韌性鋼氫脆微觀機制的研究進展. 工程科學學報, 2020, 42(8):949

    Zhang X F, Wan Y X, Wu X J, et al. Research progress toward hydrogen embrittlement microstructure mechanism in Fe–Mn–(Al)–C high-strength-and-toughness steel. Chin J Eng, 2020, 42(8): 949
    [51]
    Yoshiba M, Miyagawa O. Effect of grain boundary serration on the fatigue, creep and cyclic creep strengths of a nickel-base superalloy in air and in hot corrosive environment. ISIJ Int, 1986, 26(1): 69 doi: 10.2355/isijinternational1966.26.69
    [52]
    Bhuyan P, Pradhan S K, Mitra R, et al. Evaluating the efficiency of grain boundary serrations in attenuating high-temperature hot corrosion degradation in Alloy 617. Corros Sci, 2019, 149: 164 doi: 10.1016/j.corsci.2019.01.007
    [53]
    Kim H P, Choi M J, Kim S W, et al. Effect of serrated grain boundary on stress corrosion cracking of Alloy 600. Nucl Eng Technol, 2018, 50(7): 1131 doi: 10.1016/j.net.2018.05.009
    [54]
    Hong H U, Kim I S, Choi B G, et al. On the role of grain boundary serration in simulated weld heat-affected zone liquation of a wrought nickel-based superalloy. Metall Mater Trans A, 2012, 43(1): 173 doi: 10.1007/s11661-011-0837-2
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)  / Tables(9)

    Article views (1521) PDF downloads(91) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频