Citation: | ZHAO Xia, WANG Min, HAO Xian-chao, ZHA Xiang-dong, GAO Ming, MA Ying-che, LIU Kui. Research progress in grain boundary serration in iron/nickel based austenitic polycrystalline alloys[J]. Chinese Journal of Engineering, 2021, 43(10): 1323-1338. doi: 10.13374/j.issn2095-9389.2021.01.05.001 |
[1] |
Latief F H, Hong H U, Blanc T, et al. Influence of chromium content on microstructure and grain boundary serration formation in a ternary Ni?xCr?0.1C model alloy. Mater Chem Phys, 2014, 148(3): 1194 doi: 10.1016/j.matchemphys.2014.09.047
|
[2] |
葉銳曾, 陳國良. 論高溫合金中的彎曲晶界——廣泛應用彎曲晶界熱處理工藝. 機械工程材料, 1985, 9(4):1
Ye R Z, Chen G L. On the zigzag grain boundary in high temperature superalloys. Mater Mech Eng, 1985, 9(4): 1
|
[3] |
楊萬鵬, 胡本芙, 劉國權, 等. 高性能鎳基粉末高溫合金中γ'相形態致鋸齒晶界形成機理研究. 材料工程, 2015, 43(6):7 doi: 10.11868/j.issn.1001-4381.2015.06.002
Yang W P, Hu B F, Liu G Q, et al. Formation mechanism of serrated grain boundary caused by different morphologies of γ' phases in a high-performance nickel-based powder metallurgy superalloy. J Mater Eng, 2015, 43(6): 7 doi: 10.11868/j.issn.1001-4381.2015.06.002
|
[4] |
Koul A K, Gessinger G H. On the mechanism of serrated grain boundary formation in Ni-based superalloys. Acta Metall, 1983, 31(7): 1061 doi: 10.1016/0001-6160(83)90202-X
|
[5] |
Wu X J, Koul A K. Grain boundary sliding at serrated grain boundaries. Adv Perform Mater, 1997, 4(4): 409 doi: 10.1023/A:1008648628507
|
[6] |
Henry M F, Yoo Y S, Yoon D Y, et al. The dendritic growth of γ' precipitates and grain. Metall Trans A, 1993, 24(8): 1733 doi: 10.1007/BF02657848
|
[7] |
Danflou H L, Macia M, Sanders T H, et al. Mechanisms of formation of serrated grain boundaries in nickel base superalloys // Superalloys 1996 (Eighth International Symposium). Atlanta, 1996: 119
|
[8] |
Mitchell R J, Li H Y, Huang Z W. On the formation of serrated grain boundaries and fan type structures in an advanced polycrystalline nickel-base superalloy. J Mater Process Technol, 2009, 209(2): 1011 doi: 10.1016/j.jmatprotec.2008.03.008
|
[9] |
Lu X D, Deng Q, Du J H, et al. Effect of slow cooling treatment on microstructure of difficult deformation GH4742 superalloy. J Alloys Compd, 2009, 477(1-2): 100 doi: 10.1016/j.jallcom.2008.10.088
|
[10] |
Lu X D, Du J H, Deng Q, et al. Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy. J Alloys Compd, 2009, 486(1-2): 195 doi: 10.1016/j.jallcom.2009.07.020
|
[11] |
Jiang L, Hu R, Kou H C, et al. The effect of M23C6 carbides on the formation of grain boundary serrations in a wrought Ni-based superalloy. Mater Sci Eng A, 2012, 536: 37 doi: 10.1016/j.msea.2011.11.060
|
[12] |
Tang Y T, Karamched P, Liu J L, et al. Grain boundary serration in nickel alloy inconel 600: Quantification and mechanisms. Acta Mater, 2019, 181: 352 doi: 10.1016/j.actamat.2019.09.037
|
[13] |
Hong H U, Kim I S, Choi B G, et al. On the mechanism of serrated grain boundary formation in Ni-based superalloys with low γ' volume fraction // Superalloys 2012. Hoboken, 2012: 53
|
[14] |
Hong H U, Nam S W. Improvement of creep-fatigue life by the modification of carbide characteristics through grain boundary serration in an AISI 304 stainless steel. J Mater Sci, 2003, 38(7): 1535 doi: 10.1023/A:1022989002179
|
[15] |
Hong H U, Jeong H W, Kim I S, et al. A study on the formation of serrated grain boundaries and its applications in nimonic 263. Mater Sci Forum, 2010, 638-642: 2245 doi: 10.4028/www.scientific.net/MSF.638-642.2245
|
[16] |
Kim K J, Ginsztler J, Nam S W. The role of carbon on the occurrence of grain boundary serration in an AISI 316 stainless steel during aging heat treatment. Mater Lett, 2005, 59(11): 1439 doi: 10.1016/j.matlet.2004.12.050
|
[17] |
Yeh A C, Lu K W, Kuo C M, et al. Effect of serrated grain boundaries on the creep property of Inconel 718 superalloy. Mater Sci Eng A, 2011, 530: 525 doi: 10.1016/j.msea.2011.10.014
|
[18] |
葛占英, 于文秀, 楊蓮隱, 等. 奧氏體型高溫合金彎曲晶界普遍性的研究. 北京鋼鐵學院學報, 1986, 8(增刊1): 51
Ge Z Y, Yu W X, Yang L Y, et al. Research of zig-zag grain boundary universality in austenitic superalloys. J Beijing Univ Iron Steel Technol, 1986, 8(Suppl 1): 51
|
[19] |
Lee J W, Terner M, Hong H U, et al. A new observation of strain-induced grain boundary serration and its underlying mechanism in a Ni?20Cr binary model alloy. Mater Charact, 2018, 135: 146 doi: 10.1016/j.matchar.2017.11.047
|
[20] |
Jeong C Y, Kim K J, Hong H U, et al. Effects of aging temperature and grain size on the formation of serrated grain boundaries in an AISI 316 stainless steel. Mater Chem Phys, 2013, 139(1): 27 doi: 10.1016/j.matchemphys.2012.11.021
|
[21] |
Hong H U, Nam S W. The occurrence of grain boundary serration and its effect on the M23C6 carbide characteristics in an AISI 316 stainless steel. Mater Sci Eng A, 2002, 332(1-2): 255 doi: 10.1016/S0921-5093(01)01754-3
|
[22] |
Kim K J, Hong H U, Nam S W. A study on the mechanism of serrated grain boundary formation in an austenitic stainless steel. Mater Chem Phys, 2011, 126(3): 480 doi: 10.1016/j.matchemphys.2010.12.025
|
[23] |
譚菊芬, 姜淑榮, 田世藩. GH220合金彎曲晶界熱處理制度的研究. 航空材料, 1982, 10(增刊1): 19
Tan J F, Jang S R, Tian S F. Researches on wave grain boundaries heat treatment processes for gh220 alloy. J Aeronaut Mater, 1982, 10(Suppl 1): 19
|
[24] |
葛占英, 葉銳曾, 孫金貴, 等. 合金元素對GH220合金彎曲晶界的影響. 北京鋼鐵學院學報, 1986, 8(增刊1): 61
Ge Z Y, Ye R Z, Sun J G, et al. Effect of alloying elements on zig-zag grain boundary in superalloy GH220. J Beijing Univ Iron Steel Technol, 1986, 8(Suppl 1): 61
|
[25] |
徐志超, 葉銳曾, 王迪, 等. 在10Cr?15Co?Ni基高溫合金中彎曲晶界形成的研究. 北京鋼鐵學院學報, 1982, 4(增刊1): 78
Xu Z C, Ye R Z, Wang D, et al. Study on the formation of zig-zag grain boundary in 10Cr?15Co?Ni Ni-based superalloy. J Beijing Univ Iron Steel Technol, 1982, 4(Suppl 1): 78
|
[26] |
張旭. 微合金元素鈮對奧氏體基焊縫金屬組織與性能的影響[學位論文]. 合肥: 中國科學技術大學, 2019
Zhang X. Effect of Microalloyed Element Niobium on the Microstructure and Properties of Austenite-Based Weld Metals [Dissertation]. Hefei: University of Science and Technology of China, 2019
|
[27] |
葉銳曾, 徐志超, 葛占英, 等. 鎳基變形高溫合金中的彎曲晶界形成的機制. 北京鋼鐵學院學報, 1985, 7(2):29
Ye R Z, Xu Z C, Ge Z Y, et al. Mechanism of ziggag grain boundary formation in wrought nickelbase superalloys. J Beijing Univ Iron Steel Technol, 1985, 7(2): 29
|
[28] |
Lim Y S, Kim D J, Hwang S S, et al. M23C6 precipitation behavior and grain boundary serration in Ni-based Alloy 690. Mater Charact, 2014, 96: 28 doi: 10.1016/j.matchar.2014.07.008
|
[29] |
山崎道夫. 高炭素18Cr?12Niステンレス鋼のクリープ破斷強さにおよぼす2段溶體化処理の影響. 日本金屬學會誌, 1966, 30:1032 doi: 10.2320/jinstmet1952.30.11_1032
Yamazaki M. The effect of two-step solution treatment on the creep rupture properties of a high carbon 18Cr-12Ni stainless steel. J Jpn Inst Met, 1966, 30: 1032 doi: 10.2320/jinstmet1952.30.11_1032
|
[30] |
汪林, 葉銳曾, 周守禮, 等. GH220合金中晶界針狀碳化物的成因. 北京科技大學學報, 1990, 12(3):243
Wang L, Ye R Z, Zhou S L, et al. Research on formation rule of G.B. plate-like carbide in GH220 Ni-base wrought superalloy. J Univ Sci Technol Beijing, 1990, 12(3): 243
|
[31] |
李慧, 夏爽, 周邦新, 等. 鎳基690合金中晶界碳化物析出的研究. 金屬學報, 2011, 47(7):853
Li H, Xia S, Zhou B X, et al. Study of carbide precipitation at grain boundary in nickel base alloy 690. Acta Metall Sinica, 2011, 47(7): 853
|
[32] |
仲增墉, 馬培立, 陳淦生, 等. 高合金化鎳基變形高溫合金中彎曲晶界的初步研究. 金屬學報, 1983, 19(3):54
Zhong Z Y, Ma P L, Chen G S, et al. A study of zigzag grain boundary in high alloyed wrought nickel-base superalloy. Acta Met Sinica, 1983, 19(3): 54
|
[33] |
Koul A K, Thamburaj R. Serrated grain boundary formation potential of Ni-based superalloys and its implications. Metall Trans A, 1985, 16(1): 17 doi: 10.1007/BF02656707
|
[34] |
Bhuyan P, Reddy K V, Pradhan S K, et al. A potential insight into the serration behaviour of Σ3n (n≤3) boundaries in Alloy 617. Mater Chem Phys, 2020, 248: 122919 doi: 10.1016/j.matchemphys.2020.122919
|
[35] |
葉銳曾, 葛占英, 王曰毅, 等. 彎曲晶界對10Cr?15Co?Ni基變形高溫合金蠕變斷裂的影響. 金屬學報, 1984, 20(1):34
Ye R Z, Ge Z Y, Wang Y Y, et al. Effect of zigzag grain boundary on creep rupture of a 10Cr?15Co?Ni?BASE wrought superalloy. Acta Metall Sinica, 1984, 20(1): 34
|
[36] |
向朝進. 彎曲晶界在 Ni?Cr?W?Mo 合金蠕變斷裂中的行為研究. 四川工業學院學報, 1997, 16(4):15
Xiang C J. Investigation into curved crystal boundary beheawiour of Ni?Cr?W?Mo alloy under creep fracture. J Sichuan Inst Technol, 1997, 16(4): 15
|
[37] |
張亞平, 王曰毅, 李志云, 等. 彎曲晶界對GH49合金蠕變過程中位錯組態的影響. 重慶大學學報(自然科學版), 1988, 11(1):97
Zhang Y P, Wang Y Y, Li Z Y, et al. The effect of zigzag grain boundaries on dislocation configurations of GH49 alloy in creep process. J Chongqing Univ Nat Sci Ed, 1988, 11(1): 97
|
[38] |
張亞平, 羅虹, 王曰毅, 等. GH49合金在蠕變斷裂過程中彎曲晶界的作用. 重慶大學學報(自然科學版), 1984, 7(3):141
Zhang Y P, Luo H, Wang Y Y, et al. The effect of zigzag grain boundaries on process of creep and fracture in GH49 alloy. J Chongqing Univ Nat Sci Ed, 1984, 7(3): 141
|
[39] |
Tanaka M, Miyagawa O, Sakaki T, et al. Creep rupture strength and grain-boundary sliding in austenitic 21Cr?4Ni?9Mn steels with serrated grain boundaries. J Mater Sci, 1988, 23(2): 621 doi: 10.1007/BF01174696
|
[40] |
Tanaka M, Iizuka H, Ashihara F. Effects of serrated grain boundaries on the crack growth in austenitic heat-resisting steels during high-temperature creep. J Mater Sci, 1988, 23(11): 3827 doi: 10.1007/BF01106799
|
[41] |
Tang Y T, Wilkinson A J, Reed R C. Grain boundary serration in nickel-based superalloy inconel 600: Generation and effects on mechanical behavior. Metall Mater Trans A, 2018, 49(9): 4324 doi: 10.1007/s11661-018-4671-7
|
[42] |
Larson J M, Floreen S. Metallurgical factors affecting the crack growth resistance of a superalloy. Metall Trans A, 1977, 8(1): 51 doi: 10.1007/BF02677263
|
[43] |
Gifkins R C. Grain-boundary sliding and its accommodation during creep and superplasticity. Metall Trans A, 1976, 7(8): 1225 doi: 10.1007/BF02656607
|
[44] |
Raj R, Ashby M F. On grain boundary sliding and diffusional creep. Metall Trans, 1971, 2(4): 1113 doi: 10.1007/BF02664244
|
[45] |
葛占英, 葉銳曾, 孫金貴, 等. 彎曲晶界對GH220合金疲勞性能的影響. 北京鋼鐵學院學報, 1986, 8(增刊1): 69
Ge Z Y, Ye R Z, Sun J G, et al. Effect of zig-zag grain boundary on fatigue property of superalloy GH220. J Beijing Univ Iron Steel Technol, 1986, 8(Suppl 1): 69
|
[46] |
Tanaka M. Evolution of grain-boundary serration in fatigue. J Mater Sci Lett, 1995, 14(6): 381
|
[47] |
田少鯤, 李靜媛, 張俊龍, 等. Sc對7056鋁合金組織和性能的影響. 工程科學學報, 2019, 41(10):1298
Tian S K, Li J Y, Zhang J L, et al. Effect of Sc on the microstructure and properties of 7056 aluminum alloy. Chin J Eng, 2019, 41(10): 1298
|
[48] |
吳宗河, 祁梓宸, 許朋朋, 等. 熱軋7075/AZ31B復合板的顯微組織及結合性能. 工程科學學報, 2020, 42(5):620
Wu Z H, Qi Z C, Xu P P, et al. Microstructure and bonding properties of hot-rolled 7075/AZ31B clad sheets. Chin J Eng, 2020, 42(5): 620
|
[49] |
王宇, 熊柏青, 李志輝, 等. Al?Zn?Mg?Cu?Zr?(Sc)合金攪拌摩擦焊接頭組織和性能. 工程科學學報, 2020, 42(5):612
Wang Y, Xiong B Q, Li Z H, et al. Microstructure and properties of friction stir welded joints for Al?Zn?Mg?Cu?Zr?(Sc)alloys. Chin J Eng, 2020, 42(5): 612
|
[50] |
章小峰, 萬亞雄, 武學俊, 等. Fe?Mn?(Al)?C高強韌性鋼氫脆微觀機制的研究進展. 工程科學學報, 2020, 42(8):949
Zhang X F, Wan Y X, Wu X J, et al. Research progress toward hydrogen embrittlement microstructure mechanism in Fe–Mn–(Al)–C high-strength-and-toughness steel. Chin J Eng, 2020, 42(8): 949
|
[51] |
Yoshiba M, Miyagawa O. Effect of grain boundary serration on the fatigue, creep and cyclic creep strengths of a nickel-base superalloy in air and in hot corrosive environment. ISIJ Int, 1986, 26(1): 69 doi: 10.2355/isijinternational1966.26.69
|
[52] |
Bhuyan P, Pradhan S K, Mitra R, et al. Evaluating the efficiency of grain boundary serrations in attenuating high-temperature hot corrosion degradation in Alloy 617. Corros Sci, 2019, 149: 164 doi: 10.1016/j.corsci.2019.01.007
|
[53] |
Kim H P, Choi M J, Kim S W, et al. Effect of serrated grain boundary on stress corrosion cracking of Alloy 600. Nucl Eng Technol, 2018, 50(7): 1131 doi: 10.1016/j.net.2018.05.009
|
[54] |
Hong H U, Kim I S, Choi B G, et al. On the role of grain boundary serration in simulated weld heat-affected zone liquation of a wrought nickel-based superalloy. Metall Mater Trans A, 2012, 43(1): 173 doi: 10.1007/s11661-011-0837-2
|