<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
ZHANG Yan-ni, HOU Yun-chao, LIU Bo, DENG Jun, LIU Chun-hui, YANG Jing-jing, WEN Xin-yu. Mechanism and performance of coal spontaneous combustion with a halide carrier inorganic salt inhibitor[J]. Chinese Journal of Engineering, 2021, 43(10): 1295-1303. doi: 10.13374/j.issn2095-9389.2020.12.25.001
Citation: ZHANG Yan-ni, HOU Yun-chao, LIU Bo, DENG Jun, LIU Chun-hui, YANG Jing-jing, WEN Xin-yu. Mechanism and performance of coal spontaneous combustion with a halide carrier inorganic salt inhibitor[J]. Chinese Journal of Engineering, 2021, 43(10): 1295-1303. doi: 10.13374/j.issn2095-9389.2020.12.25.001

Mechanism and performance of coal spontaneous combustion with a halide carrier inorganic salt inhibitor

doi: 10.13374/j.issn2095-9389.2020.12.25.001
More Information
  • Corresponding author: E-mail: zyn2099@xust.edu.cn
  • Received Date: 2020-12-25
    Available Online: 2021-01-29
  • Publish Date: 2021-10-12
  • Coal spontaneous combustion seriously restricts the safe production of coal mines, and adding an inhibitor is one of the effective methods to prevent coal spontaneous combustion. To improve the pertinence and high efficiency of the inhibitor, this paper considered the intrinsic properties and external conditions that affect the occurrence of coal spontaneous combustion, combined with the characteristics that the rare earth hydrotalcite can effectively improve the thermal stability, coupling, and flame retardancy of the coal and the halide inhibitor. The halide inhibitor can enhance the permeability, dispersion, and uniformity of the rare earth hydrotalcite as a carrier. The halide carrier inorganic salt inhibitor was prepared. To study the inhibition mechanism and performance of the halide carrier inorganic salt inhibitor on coal spontaneous combustion, differential scanning calorimetry (DSC) was used to test the variation law of parameters, such as stage characteristics, characteristic temperature, thermal effect, and apparent activation energy in the process of coal spontaneous combustion under the action of a rare earth hydrotalcite, MgCl2 and a halide carrier inorganic salt inhibitor. Test results reveal that the OH of the rare earth hydrotalcite laminate can generate a weak hydrogen bond with acidic functional groups such as ?COOH in coal molecules so that the activity of the acidic functional groups is weakened. Mg2+ complexes with ?COO? in coal molecules to form ?COOMg?, resulting in the weakening of the C=O activity in ?COO?, which is the main mechanism of the halide carrier inorganic salts inhibiting coal spontaneous combustion. The endothermic peak of the DSC curve appears as a double peak or multi-peak after the addition of halide carrier inorganic salts to the coal sample. Compared with the raw coal, the peak temperature is shifted back by 50–60 ℃, the T1 temperature is shifted back by 90–100 ℃, and the total heat release decreased by 19–27 kJ?g?1. Furthermore, the apparent activation energy of each stage of the coal body is effectively improved. Results revealed that the halide carrier inorganic salt inhibitor could effectively inhibit the reaction process of coal spontaneous combustion.

     

  • loading
  • [1]
    Zhang Y N, Chen L, Zhao J Y, et al. Evaluation of the spontaneous combustion characteristics of coal of different metamorphic degrees based on a temperature-programmed oil bath experimental system. J Loss Prev Process Ind, 2019, 60: 17 doi: 10.1016/j.jlp.2019.03.007
    [2]
    Zhang Y N, Hou Y C, Zhao J Y, et al. Heat release characteristic of key functional groups during low-temperature oxidation of coal. Combust Sci Technol, 2020: 1
    [3]
    Zhao J Y, Deng J, Chen L, et al. Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation. Energy, 2019, 181: 136 doi: 10.1016/j.energy.2019.05.158
    [4]
    郭文杰. 煤自燃特性影響因素的試驗研究. 安全與環境學報, 2018, 18(4):1307

    Guo W J. Experimental test and examination of the influential factors of the coal spontaneous combustion. J Saf Environ, 2018, 18(4): 1307
    [5]
    朱洪濤, 李巖娜, 翟秋月, 等. 稀土元素類水滑石的制備及其性能研究. 河南化工, 2019, 36(7):15

    Zhu H T, Li Y N, Zhai Q Y, et al. Preparation and performance research of hydrotalcites containing rare earth element. Henan Chem Ind, 2019, 36(7): 15
    [6]
    劉奕禎, 段天欣, 鄧仟, 等. 焙燒水滑石的制備及其吸附Cr(VI)的研究. 廣州化工, 2020, 48(15):109 doi: 10.3969/j.issn.1001-9677.2020.15.035

    Liu Y Z, Duan T X, Deng Q, et al. Preparation of calcined hydrotalcite and adsorption of Cr(VI). Guangzhou Chem Ind, 2020, 48(15): 109 doi: 10.3969/j.issn.1001-9677.2020.15.035
    [7]
    龐葉青, 張奇. 阻化劑氯化鎂抑制煤自燃的實驗研究. 同煤科技, 2020(3):51

    Pang Y Q, Zhang Q. Research of inhibitor suppression on coal spontaneous combustion by magnesium chloride. Datong Coal Sci Technol, 2020(3): 51
    [8]
    許紅英. 復合阻化劑抑制煤自燃的熱重動力學實驗研究. 礦業研究與開發, 2019, 39(6):79

    Xu H Y. Experimental study of thermogravimetric kinetics on the composite inhibitor for inhibiting coal spontaneous combustion. Min Res Dev, 2019, 39(6): 79
    [9]
    馬冬娟, 唐一博. 煤中伴生金屬元素對煤低溫氧化特性的影響. 煤炭科學技術, 2019, 47(2):203

    Ma D J, Tang Y B. Influence of associated metal elements in coal on low-temperature oxidation characteristics of coal. Coal Sci Technol, 2019, 47(2): 203
    [10]
    王福生, 王建濤, 董憲偉, 等. 次磷酸鹽對煤自燃的阻化特性實驗研究. 煤礦安全, 2020, 51(5):45

    Wang F S, Wang J T, Dong X W, et al. Experimental research on resistance characteristics of hypophosphite to coal spontaneous combustion. Saf Coal Mines, 2020, 51(5): 45
    [11]
    金永飛, 李毅恒, 劉博. 稀土類水滑石的煤自燃阻化效果研究. 煤炭技術, 2017, 36(10):101

    Jin Y F, Li Y H, Liu B. Research on inhibiting effects of LDHs on coal spontaneous combustion. Coal Technol, 2017, 36(10): 101
    [12]
    楊計先, 白祖錦. LDHs阻化劑對煙煤的阻化特性實驗研究. 煤礦安全, 2018, 49(8):35

    Yang J X, Bai Z J. Experimental study on inhibition characteristic of LDHs inhibitor to bituminous coal. Saf Coal Mines, 2018, 49(8): 35
    [13]
    周喜, 袁浩坤, 何鵬, 等. 表面改性劑對Zn?Mg?Al水滑石熱穩定劑性能影響. 精細化工, 2018, 35(8):1389

    Zhou X, Yuan H K, He P, et al. Effect of surface modifier on properties of Zn?Mg?Al hydrotalcites as heat stabilizer. Fine Chem, 2018, 35(8): 1389
    [14]
    武衛榮, 劉濤, 劉振輝, 等. 煤自燃阻化劑的研究進展. 應用化工, 2017, 46(2):356

    Wu W R, Liu T, Liu Z H, et al. Research progress of coal self ignition inhibitor. Appl Chem Ind, 2017, 46(2): 356
    [15]
    張玉濤, 史學強, 李亞清, 等. 鋅鎂鋁層狀雙氫氧化物對煤自燃的阻化特性. 煤炭學報, 2017, 42(11):2892

    Zhang Y T, Shi X Q, Li Y Q, et al. Inhibiting effects of Zn/Mg/Al layer double hydroxide on coal spontaneous combustion. J China Coal Soc, 2017, 42(11): 2892
    [16]
    李進海, 王兵, 張安山, 等. 鹵鹽阻化劑對郭屯煤礦煤層的阻化效果研究. 煤炭與化工, 2020, 43(5):142

    Li J H, Wang B, Zhang A S, et al. Research on inhibition effect of halogen inhibitor on coal seam of Guotun Coal Mine. Coal Chem Ind, 2020, 43(5): 142
    [17]
    董憲偉, 艾晴雪, 王福生, 等. 煤氧化阻化過程中的熱特性研究. 中國安全生產科學技術, 2016, 12(4):70

    Dong X W, Ai Q X, Wang F S, et al. Research on thermal characteristics in the process of coal oxidation inhibition. J Saf Sci Technol, 2016, 12(4): 70
    [18]
    Zhou K Q, Gao R, Qian X D. Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): towards reducing fire hazards of epoxy. J Hazard Mater, 2017, 338: 343 doi: 10.1016/j.jhazmat.2017.05.046
    [19]
    吳兵, 婁鵬, 王超. 阻化劑防治煤自燃效果分析. 中國煤炭, 2014, 40(6):117 doi: 10.3969/j.issn.1006-530X.2014.06.031

    Wu B, Lou P, Wang C. Analysis of coal spontaneous combustion control by inhibitor. China Coal, 2014, 40(6): 117 doi: 10.3969/j.issn.1006-530X.2014.06.031
    [20]
    鄭蘭芳. 抑制煤氧化自燃的鹽類阻化劑性能分析. 煤炭科學技術, 2010, 38(5):70

    Zheng L F. Test and analysis on salty retardants performance to restrain coal oxidized spontaneous combustion. Coal Sci Technol, 2010, 38(5): 70
    [21]
    李緒萍, 陳映光, 張金山, 等. 氯鹽復合阻化劑對不同煤樣自燃阻化效果的研究. 煤炭工程, 2020, 52(2):106

    Li X P, Chen Y G, Zhang J S, et al. Study on the inhibition effect of chlorine salt composite inhibitor on spontaneous combustion of different coal samples. Coal Eng, 2020, 52(2): 106
    [22]
    楊漪. 基于氧化特性的煤自燃阻化劑機理及性能研究[學位論文]. 西安: 西安科技大學, 2015

    Yang Y. Mechanism and Performance of Inhibitor Based on Oxidation Characteristic of the Spontaneous Combustion of Coal [Dissertation]. Xi’an: Xi’an University of Science and Technology, 2015
    [23]
    張辛亥, 丁峰, 張玉濤, 等. LDHs復合阻化劑對煤阻化性能的試驗研究. 煤炭科學技術, 2017, 45(1):84

    Zhang X H, Ding F, Zhang Y T, et al. Experimental study on LDHs composite inhibitor to coal resistance property. Coal Sci Technol, 2017, 45(1): 84
    [24]
    段志勇, 王飛. MgCl2對煤一次氧化與二次氧化影響的實驗研究. 煤礦安全, 2017, 48(6):13

    Duan Z Y, Wang F. Influence of MgCl2 on initial oxidation and secondary oxidation of coal. Saf Coal Mines, 2017, 48(6): 13
    [25]
    趙婧昱, 張永利, 鄧軍, 等. 影響煤自燃氣體產物釋放的主要活性官能團. 工程科學學報, 2020, 42(9):1139

    Zhao J Y, Zhang Y L, Deng J, et al. Key functional groups affecting the release of gaseous products during spontaneous combustion of coal. Chin J Eng, 2020, 42(9): 1139
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article views (557) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频