<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
ZHANG Bo-yang, ZHANG Yu-dong, LI Jia-qi, LI Rui, ZHANG Qing-dong. Transfer behaviors and evolution of surface micromorphology of non-smooth strip in temper rolling process with rough roller[J]. Chinese Journal of Engineering, 2021, 43(10): 1355-1364. doi: 10.13374/j.issn2095-9389.2020.08.25.004
Citation: ZHANG Bo-yang, ZHANG Yu-dong, LI Jia-qi, LI Rui, ZHANG Qing-dong. Transfer behaviors and evolution of surface micromorphology of non-smooth strip in temper rolling process with rough roller[J]. Chinese Journal of Engineering, 2021, 43(10): 1355-1364. doi: 10.13374/j.issn2095-9389.2020.08.25.004

Transfer behaviors and evolution of surface micromorphology of non-smooth strip in temper rolling process with rough roller

doi: 10.13374/j.issn2095-9389.2020.08.25.004
More Information
  • Corresponding author: E-mail: zhangby@ustb.edu.cn
  • Received Date: 2020-08-25
    Available Online: 2021-01-12
  • Publish Date: 2021-10-12
  • To meet special requirements and respond to control problems of surface micromorphology of different strips in skin rolling process, a rolling transfer generation model of the surface micromorphology contact between work roll and actual rough surface of strip was established on the basis of batch tracing the surface micromorphology of electric discharge textured roll, grinding roll and cold rolled strip. The inheritance and evolution of surface micromorphology of the strip was analyzed based on the generation model and the accuracy of the generation model was verified by industrial experiments. The concepts of negative transfer and transfer saturation were proposed, and the descriptive indicators for two extreme rolling transfer status (the maximum negative transfer and transfer saturation) were defined. When strip surface roughness is equal to or less than that of roll, a maximum negative transfer point and transfer saturation point exist, while when strip surface roughness is greater than that of roll, the maximum negative transfer point is in superposition with the transfer saturation point. Under the above precondition, through the rolling force of critical strip width, which corresponds to the maximum negative transfer point and transfer saturation point, the inheritance and evolution of surface micromorphology of the strip were characterized. The effect of strip yield strength, strip surface roughness, and roll surface roughness on the rolling force of critical strip width corresponding to maximum negative transfer point and transfer saturation point were also analyzed. Results show that with the increase of strip yield strength and roll surface roughness, the rolling force of critical strip width corresponding to maximum negative transfer point and transfer saturation point increases. With the increase of strip surface roughness, the rolling force of critical strip width corresponding to maximum negative transfer point increases, and the rolling force of critical strip width corresponding to transfer saturation point decreases.

     

  • loading
  • [1]
    張清東, 張勃洋, 李瑞, 等. 鋼板微觀表面質量控制理論與技術研究進展. 機械工程學報, 2016, 52(10):32 doi: 10.3901/JME.2016.10.032

    Zhang Q D, Zhang B Y, Li R, et al. Advances in theory and technology for microscopic surface quality control of steel strip. J Mech Eng, 2016, 52(10): 32 doi: 10.3901/JME.2016.10.032
    [2]
    張清東, 張勃洋, 李瑞, 等. 鍍錫鋼板表面光澤度軋制轉印控制. 機械工程學報, 2016, 52(14):48 doi: 10.3901/JME.2016.14.048

    Zhang Q D, Zhang B Y, Li R, et al. Control of surface glossiness during temper rolling aimed at improving visual aesthetics of tinplate. J Mech Eng, 2016, 52(14): 48 doi: 10.3901/JME.2016.14.048
    [3]
    徐冬, 李洪波, 張杰, 等. 冷軋平整機毛化輥表面形貌特征多參數對比分析. 中南大學學報(自然科學版), 2014, 45(3):734

    Xu D, Li H B, Zhang J, et al. Surface topography multi-parameter analysis of textured rolls in cold temper mill. J Cent South Univ Sci Technol, 2014, 45(3): 734
    [4]
    王橋醫, 朱媛, 過山, 等. 基于軋制界面表面粗糙度特征的板帶軋機混合潤滑特性研究. 中南大學學報(自然科學版), 2019, 50(1):83 doi: 10.11817/j.issn.1672-7207.2019.01.012

    Wang Q Y, Zhu Y, Guo S, et al. Research on mixed lubrication characteristics of strip mill based on surface roughness features of rolling interface. J Cent South Univ Sci Technol, 2019, 50(1): 83 doi: 10.11817/j.issn.1672-7207.2019.01.012
    [5]
    孫榮生, 王靜, 劉英明, 等. 冷連軋機組軋后鋼板表面形貌的控制//第十一屆中國鋼鐵年會論文集. 北京, 2017: 1

    Sun R S, Wang J, Liu Y M, et al. The control measure of the surface topography on the cold rolling strip//Proceedings of 11th China Iron & Steel Annual Meeting. Beijing, 2017: 1
    [6]
    尤媛, 李洪波, 夏春雨, 等. 冷軋毛化工作輥表面粗糙度衰減過程的試驗與數學模型研究. 機械工程學報, 2018, 54(12):173 doi: 10.3901/JME.2018.12.173

    You Y, Li H B, Xia C Y, et al. Experimental and mathematical model study of attenuation process of the surface roughness of textured work rolls during cold rolling. J Mech Eng, 2018, 54(12): 173 doi: 10.3901/JME.2018.12.173
    [7]
    Li R, Zhang Q D, Zhang X F, et al. Control method for steel strip roughness in two-stand temper mill rolling. Chin J Mech Eng, 2015, 28(3): 573 doi: 10.3901/CJME.2015.0310.027
    [8]
    張清東, 張勃洋, 馬磊, 等. 高強度帶鋼表面粗糙度軋制轉印規律及預測模型. 工程科學學報, 2016, 38(1):118

    Zhang Q D, Zhang B Y, Ma L, et al. Surface roughness rolling-transfer regularity and prediction model of high strength steel strips. Chin J Eng, 2016, 38(1): 118
    [9]
    白振華, 王駿飛. 冷連軋機成品板面粗糙度控制技術的研究. 鋼鐵, 2006, 41(11):46 doi: 10.3321/j.issn:0449-749X.2006.11.013

    Bai Z H, Wang J F. Control technique for surface roughness of strip in cold tandem rolling. Iron Steel, 2006, 41(11): 46 doi: 10.3321/j.issn:0449-749X.2006.11.013
    [10]
    Plouraboué F, Boehm M. Multiscale roughness transfer in cold metal rolling. Tribol Int, 1999, 32(1): 45 doi: 10.1016/S0301-679X(99)00013-4
    [11]
    Dick K, Lenard J G. The effect of roll roughness and lubricant viscosity on the loads on the mill during cold rolling of steel strips. J Mater Process Technol, 2005, 168(1): 16 doi: 10.1016/j.jmatprotec.2004.09.091
    [12]
    Jiang Z Y, Tieu A K. Contact mechanism and work roll wear in cold rolling thin strip. Wear, 2007, 263(7-12): 1447 doi: 10.1016/j.wear.2006.12.068
    [13]
    陳金山, 李長生, 曹勇. 軋輥粗糙度對不銹鋼板帶表面和工藝參數的影響. 機械工程學報, 2013, 49(4):30 doi: 10.3901/JME.2013.04.030

    Chen J S, Li C S, Cao Y. Effects of roll roughness on surface and process parameters for stainless-steel strip. J Mech Eng, 2013, 49(4): 30 doi: 10.3901/JME.2013.04.030
    [14]
    徐冬, 楊荃, 王曉晨, 等. 冷軋界面油膜厚度對表面形貌轉印過程的影響. 哈爾濱工業大學學報, 2017, 49(1):160 doi: 10.11918/j.issn.0367-6234.2017.01.024

    Xu D, Yang Q, Wang X C, et al. Influence of lubrication film thickness on transfer of surface topography at cold rolling interface. J Harbin Inst Technol, 2017, 49(1): 160 doi: 10.11918/j.issn.0367-6234.2017.01.024
    [15]
    高興昌. 冷軋帶鋼表面粗糙度的影響因素與復制率研究. 本鋼技術, 2013(1):31

    Gao X C. Study on control technology of cold rolled strip roughness. Bengang Technol, 2013(1): 31
    [16]
    張佳康, 周曉敏, 蔣靖. 冷軋帶鋼表面微觀形貌軋制轉印規律分析. 金屬世界, 2018(3):34 doi: 10.3969/j.issn.1000-6826.2018.03.09

    Zhang J K, Zhou X M, Jiang J. Analysis of the rolling transfer fabrication of cold rolled steel strip surface micro-topography. Met World, 2018(3): 34 doi: 10.3969/j.issn.1000-6826.2018.03.09
    [17]
    井玉安, 臧曉明, 商秋月, 等. 酸洗冷軋過程中軋件表面形貌演變規律研究. 軋鋼, 2015, 32(1):31

    Jing Y A, Zang X M, Shang Q Y, et al. Evolution of surface morphologies of piece in process of cold rolling. Steel Roll, 2015, 32(1): 31
    [18]
    Shi J Y, McElwain D L S, Domanti S A. Some surface profiles of a strip after plane-strain indentation by rigid bodies with serrated surfaces. J Mater Process Technol, 2002, 124(1-2): 227 doi: 10.1016/S0924-0136(02)00177-2
    [19]
    Wu C H, Zhang L C, Qu P L, et al. A new method for predicting the three-dimensional surface texture transfer in the skin pass rolling of metal strips. Wear, 2019, 426-427: 1246 doi: 10.1016/j.wear.2018.12.020
    [20]
    Giarola A M, Pereira P H R, Stemler P A, et al. Strain heterogeneities in the rolling direction of steel sheets submitted to the skin pass: A finite element analysis. J Mater Process Technol, 2015, 216: 234 doi: 10.1016/j.jmatprotec.2014.09.015
    [21]
    張曉峰, 李瑞, 張勃洋, 等. 平整軋制過程中帶鋼表面形貌的生成模型. 機械工程學報, 2013, 49(14):38 doi: 10.3901/JME.2013.14.038

    Zhang X F, Li R, Zhang B Y, et al. Model for the generation of surface topography in steel strip temper rolling. J Mech Eng, 2013, 49(14): 38 doi: 10.3901/JME.2013.14.038
    [22]
    Mishra M, Egberts P, Bennewitz R, et al. Friction model for single-asperity elastic-plastic contacts. Phys Rev B, 2012, 86(4): 045452 doi: 10.1103/PhysRevB.86.045452
    [23]
    Poulios K, Klit P. Implementation and applications of a finite-element model for the contact between rough surfaces. Wear, 2013, 303(1-2): 1 doi: 10.1016/j.wear.2013.02.024
    [24]
    Mulvihill D M, Kartal M E, Nowell D, et al. An elastic–plastic asperity interaction model for sliding friction. Tribol Int, 2011, 44(12): 1679 doi: 10.1016/j.triboint.2011.06.018
    [25]
    Le H R, Sutcliffe M P F. Finite element modelling of the evolution of surface pits in metal forming processes. J Mater Process Technol, 2004, 145(3): 391 doi: 10.1016/j.jmatprotec.2003.09.007
    [26]
    徐冬, 張杰, 李洪波, 等. 冷軋帶鋼表面粗糙度影響因素及控制策略. 中南大學學報(自然科學版), 2017, 48(1):112 doi: 10.11817/j.issn.1672-7207.2017.01.016

    Xu D, Zhang J, Li H B, et al. Influence factors and control strategy of cold rolled strip surface roughness. J Cent South Univ Sci Technol, 2017, 48(1): 112 doi: 10.11817/j.issn.1672-7207.2017.01.016
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article views (1202) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频