<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Turn off MathJax
Article Contents
Development of a New Fast and High-precision Active Learning Algorithm: Taking the Material Mechanical Properties Prediction of MAX Phase Crystals as Examples[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2023.03.15.001
Citation: Development of a New Fast and High-precision Active Learning Algorithm: Taking the Material Mechanical Properties Prediction of MAX Phase Crystals as Examples[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2023.03.15.001

Development of a New Fast and High-precision Active Learning Algorithm: Taking the Material Mechanical Properties Prediction of MAX Phase Crystals as Examples

doi: 10.13374/j.issn2095-9389.2023.03.15.001
  • Available Online: 2023-05-06
  • In recent years, MAX phase crystals have become one of the global research hotspots, because of their unique nanolayered crystal structure with its advantages of self-lubrication, high tenacity and electrical conductivity.M2AX phase crystals have the properties of ceramic and metal compounds, and have thermal shock resistance, high tenacity, electrical conductivity and thermal conductivity.Due to the difficulty of preparing single-phase samples for such materials,the development of this materials is limited.Active learning is a machine learning method that uses a small number of labeled samples to achieve high prediction performance. In this paper, we combine the efficient global optimization and the residual active learning regression to propose a improved active learning selection strategies, called RS-EGO, and proposed for predicting the bulk modulus, Young's modulus, shear modulus and Poisson's ratio on a dataset of 169 M2AX phase crystals. It is found that the improved selection strategy RS-EGO has better prediction performance for the four objectives and also more suitable for the material performance prediction problem for small data samples.

     

  • loading
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索
    Article views (82) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频