Citation: | LUO Jiahao, YIN Junjun, YANG Jian. Polarimetric SAR ship detection based on superpixel and sparse reconstruction saliency[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.12.28.002 |
[1] |
王雪松, 陳思偉. 合成孔徑雷達極化成像解譯識別技術的進展與展望. 雷達學報, 2020, 9(2):259 doi: 10.12000/JR19109
Wang X S, Chen S W. Polarimetric synthetic aperture radar interpretation and recognition: Advances and perspectives. J Radars, 2020, 9(2): 259 doi: 10.12000/JR19109
|
[2] |
杜蘭, 王兆成, 王燕, 等. 復雜場景下單通道SAR目標檢測及鑒別研究進展綜述. 雷達學報, 2020, 9(1):34 doi: 10.12000/JR19104
Du L, Wang Z C, Wang Y, et al. Survey of research progress on target detection and discrimination of single-channel SAR images for complex scenes. J Radars, 2020, 9(1): 34 doi: 10.12000/JR19104
|
[3] |
鄧云凱, 禹衛東, 張衡, 等. 未來星載SAR技術發展趨勢. 雷達學報, 2020, 9(1):1 doi: 10.12000/JR20008
Deng Y K, Yu W D, Zhang H, et al. Forthcoming spaceborne SAR development. J Radars, 2020, 9(1): 1 doi: 10.12000/JR20008
|
[4] |
張杰, 張晰, 范陳清, 等. 極化SAR在海洋探測中的應用與探討. 雷達學報, 2016, 5(6):596
Zhang J, Zhang X, Fan C Q, et al. Discussion on application of polarimetric synthetic aperture radar in marine surveillance. J Radars, 2016, 5(6): 596
|
[5] |
王雪松. 雷達極化技術研究現狀與展望. 雷達學報, 2016, 5(2):119 doi: 10.12000/JR16039
Wang X S. Status and prospects of radar polarimetry techniques. J Radars, 2016, 5(2): 119 doi: 10.12000/JR16039
|
[6] |
劉濤, 楊子淵, 蔣燕妮, 等. 極化SAR圖像艦船目標檢測研究綜述. 雷達學報, 2021, 10(1):1 doi: 10.12000/JR20155
Liu T, Yang Z Y, Jiang Y N, et al. Review of ship detection in polarimetric synthetic aperture imagery. J Radars, 2021, 10(1): 1 doi: 10.12000/JR20155
|
[7] |
崔興超, 粟毅, 陳思偉. 融合極化旋轉域特征和超像素技術的極化SAR艦船檢測. 雷達學報, 2021, 10(1):35 doi: 10.12000/JR20147
Cui X C, Su Y, Chen S W. Polarimetric SAR ship detection based on polarimetric rotation domain features and superpixel technique. J Radars, 2021, 10(1): 35 doi: 10.12000/JR20147
|
[8] |
Liu T, Yang Z Y, Yang J, et al. CFAR ship detection methods using compact polarimetric SAR in a K-Wishart distribution. IEEE J STARS, 2019, 12(10): 3737
|
[9] |
Pappas O, Achim A, Bull D. Superpixel-level CFAR detectors for ship detection in SAR imagery. IEEE Geosci Remote Sens Lett, 2018, 15(9): 1397 doi: 10.1109/LGRS.2018.2838263
|
[10] |
Gao G. A parzen-window-kernel-based CFAR algorithm for ship detection in SAR images. IEEE Geosci Remote Sens Lett, 2011, 8(3): 557 doi: 10.1109/LGRS.2010.2090492
|
[11] |
黃寅禮, 孫路, 郭亮, 等. 基于空間變跡濾波旁瓣抑制與有序統計恒虛警率的艦船檢測算法. 雷達學報, 2020, 9(2):335 doi: 10.12000/JR19082
Huang Y L, Sun L, Guo L, et al. Ship detection algorithm based on spatially variant apodization sidelobe suppression and order statistic-constant false alarm rate. J Radars, 2020, 9(2): 335 doi: 10.12000/JR19082
|
[12] |
陳祥, 孫俊, 尹奎英, 等. 基于CFAR級聯的SAR圖像艦船目標檢測算法. 現代雷達, 2012, 34(9):50 doi: 10.3969/j.issn.1004-7859.2012.09.011
Chen X, Sun J, Yin K Y, et al. An algorithm of ship target detection in SAR images based on cascaded CFAR. Mod Radar, 2012, 34(9): 50 doi: 10.3969/j.issn.1004-7859.2012.09.011
|
[13] |
An W T, Xie C H, Yuan X Z. An improved iterative censoring scheme for CFAR ship detection with SAR imagery. IEEE Trans Geosci Remote Sens, 2014, 52(8): 4585 doi: 10.1109/TGRS.2013.2282820
|
[14] |
Weiss M. Analysis of some modified cell-averaging CFAR processors in multiple-target situations. IEEE Trans Aerosp Electron Syst, 1982, AES-18(1): 102 doi: 10.1109/TAES.1982.309210
|
[15] |
Novak L M, Burl M C, Irving W W. Optimal polarimetric processing for enhanced target detection. IEEE Trans Aerosp Electron Syst, 1993, 29(1): 234 doi: 10.1109/7.249129
|
[16] |
Goldstein G B. False-alarm regulation in log-normal and weibull clutter. IEEE Trans Aerosp Electron Syst, 1973, AES-9(1): 84 doi: 10.1109/TAES.1973.309705
|
[17] |
Ritcey J A, Du H. Order statistic CFAR detectors for speckled area targets in SAR // Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers. Pacific Grove, 1991: 1082
|
[18] |
Anastassopoulos V, Lampropoulos G A. Optimal CFAR detection in weibull clutter. IEEE Trans Aerosp Electron Syst, 1995, 31(1): 52 doi: 10.1109/7.366292
|
[19] |
Leng X G, Ji K F, Xing X W, et al. Area ratio invariant feature group for ship detection in SAR imagery. IEEE J Sel Top Appl Earth Obs Remote Sens, 2018, 11(7): 2376 doi: 10.1109/JSTARS.2018.2820078
|
[20] |
Fan W W, Zhou F, Bai X R, et al. Ship detection using deep convolutional neural networks for PolSAR images. Remote Sens, 2019, 11(23): 2862 doi: 10.3390/rs11232862
|
[21] |
Chang Y L, Anagaw A, Chang L N, et al. Ship detection based on YOLOv2 for SAR imagery. Remote Sens, 2019, 11(7): 786 doi: 10.3390/rs11070786
|
[22] |
張曉玲, 張天文, 師君, 等. 基于深度分離卷積神經網絡的高速高精度SAR艦船檢測. 雷達學報, 2019, 8(6):841 doi: 10.12000/JR19111
Zhang X L, Zhang T W, Shi J, et al. High-speed and high-accurate SAR ship detection based on a depthwise separable convolution neural network. J Radars, 2019, 8(6): 841 doi: 10.12000/JR19111
|
[23] |
田壯壯, 占榮輝, 胡杰民, 等. 基于卷積神經網絡的SAR圖像目標識別研究. 雷達學報, 2016, 5(3):320 doi: 10.12000/JR16037
Tian Z Z, Zhan R H, Hu J M, et al. SAR ATR based on convolutional neural network. J Radars, 2016, 5(3): 320 doi: 10.12000/JR16037
|
[24] |
Chen S W, Tao C S, Wang X S, et al. Polarimetric SAR targets detection and classification with deep convolutional neural network // 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama). Toyama, 2019: 2227
|
[25] |
Zhou F, Fan W W, Sheng Q Q, et al. Ship detection based on deep convolutional neural networks for polsar images // IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, 2018: 681
|
[26] |
Jin K, Chen Y L, Xu B, et al. A patch-to-pixel convolutional neural network for small ship detection with PolSAR images. IEEE Trans Geosci Remote Sens, 2020, 58(9): 6623 doi: 10.1109/TGRS.2020.2978268
|
[27] |
Zhai L, Li Y, Su Y. Inshore ship detection via saliency and context information in high-resolution SAR images. IEEE Geosci Remote Sens Lett, 2016, 13(12): 1870 doi: 10.1109/LGRS.2016.2616187
|
[28] |
Cui X C, Su Y, Chen S W. A saliency detector for polarimetric SAR ship detection using similarity test. IEEE J Sel Top Appl Earth Obs Remote Sens, 2019, 12(9): 3423 doi: 10.1109/JSTARS.2019.2925833
|
[29] |
Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell, 2009, 31(2): 210 doi: 10.1109/TPAMI.2008.79
|
[30] |
Li X H, Lu H C, Zhang L H, et al. Saliency detection via dense and sparse reconstruction // 2013 IEEE International Conference on Computer Vision. Sydney, 2013: 2976
|
[31] |
Lu H C, Li X H, Zhang L H, et al. Dense and sparse reconstruction error based saliency descriptor. IEEE Trans Image Process, 2016, 25(4): 1592 doi: 10.1109/TIP.2016.2524198
|
[32] |
Borji A, Itti L. Exploiting local and global patch rarities for saliency detection // 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, 2012: 478
|
[33] |
Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell, 2012, 34(11): 2274 doi: 10.1109/TPAMI.2012.120
|
[34] |
Qin F C, Guo J M, Lang F K. Superpixel segmentation for polarimetric SAR imagery using local iterative clustering. IEEE Geosci Remote Sens Lett, 2015, 12(1): 13 doi: 10.1109/LGRS.2014.2322960
|
[35] |
Li T, Liu Z, Xie R, et al. An improved superpixel-level CFAR detection method for ship targets in high-resolution SAR images. IEEE J Sel Top Appl Earth Obs Remote Sens, 2018, 11(1): 184 doi: 10.1109/JSTARS.2017.2764506
|
[36] |
Cui X C, Tao C S, Su Y, et al. PolSAR ship detection based on polarimetric correlation pattern. IEEE Geosci Remote Sens Lett, 2021, 18(3): 471 doi: 10.1109/LGRS.2020.2976477
|