Citation: | LIU Fangfang, ZHANG Aili, SI Xinhui, CAO Limei. Heat transfer of power-law fluids with variable thermal conductivities on a horizontal rough surface[J]. Chinese Journal of Engineering, 2023, 45(11): 1977-1984. doi: 10.13374/j.issn2095-9389.2022.09.30.003 |
[1] |
Schowalter W R. The application of boundary-layer theory to power-law pseudoplastic fluids: Similar solutions. Aiche J, 1960, 6(1): 24 doi: 10.1002/aic.690060105
|
[2] |
Huang M J, Chen C K. Numerical analysis for forced convection over a flat plate in power law fluids. Int Commun Heat Mass Transf, 1984, 11(4): 361 doi: 10.1016/0735-1933(84)90064-2
|
[3] |
Wang T Y. Mixed convection from a vertical plate to non-Newtonian fluids with uniform surface heat flux. Int Commun Heat Mass Transf, 1995, 22(3): 369 doi: 10.1016/0735-1933(95)00017-S
|
[4] |
Wang T Y. Mixed convection heat transfer from a vertical plate to non-Newtonian fluids. Int J Heat Fluid Flow, 1995, 16(1): 56 doi: 10.1016/0142-727X(94)00008-Z
|
[5] |
Hady F M. Mixed convection boundary-layer flow of non-Newtonian fluids on a horizontal plate. Appl Math Comput, 1995, 68(2-3): 105
|
[6] |
Howell T G, Jeng D R, De Witt K J. Momentum and heat transfer on a continuous moving surface in a power law fluid. Int J Heat Mass Transf, 1997, 40(8): 1853 doi: 10.1016/S0017-9310(96)00247-5
|
[7] |
Rao J H, Jeng D R, De Witt K J. Momentum and heat transfer in a power-law fluid with arbitrary injection/suction at a moving wall. Int J Heat Mass Transf, 1999, 42(15): 2837 doi: 10.1016/S0017-9310(98)00360-3
|
[8] |
Hassanien I A, Abdullah A A, Gorla R S R. Flow and heat transfer in a power-law fluid over a nonisothermal stretching sheet. Math Comput Model, 1998, 28(9): 105 doi: 10.1016/S0895-7177(98)00148-4
|
[9] |
Luna N, Méndez F, Trevi?o C. Conjugated heat transfer in circular ducts with a power-law laminar convection fluid flow. Int J Heat Mass Transf, 2002, 45(3): 655 doi: 10.1016/S0017-9310(01)00147-8
|
[10] |
Chen C H. Effect of viscous dissipation on heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet. J Non Newton Fluid Mech, 2006, 135(2-3): 128 doi: 10.1016/j.jnnfm.2006.01.009
|
[11] |
Ghosh Moulic S, Yao L S. Natural convection along a vertical wavy surface with uniform heat flux. J Heat Transf, 1989, 111(4): 1106 doi: 10.1115/1.3250780
|
[12] |
Ghosh Moulic S, Yao L S. Mixed convection along a wavy surface. J Heat Transf, 1989, 111(4): 974 doi: 10.1115/1.3250813
|
[13] |
Yao L S. Natural convection along a vertical complex wavy surface. Int J Heat Mass Transf, 2006, 49(1-2): 281 doi: 10.1016/j.ijheatmasstransfer.2005.06.026
|
[14] |
Pop I, Nakamura S. Laminar boundary layer flow of power-law fluids over wavy surfaces. Acta Mech, 1996, 115: 55 doi: 10.1007/BF01187428
|
[15] |
Kim E, Chen J L S. Natural convection of non-Newtonian fluids along a wavy vertical plate // 28th National Heat Transfer Conference. Minneapolis, 1991: 45
|
[16] |
Kumari M, Pop I, Takhar H S. Free convection of a non-newtonian power-law fluid from a vertical wavy surface with uniform surface heat flux. ZAMM J Appl Math Mech, 1996, 76(9): 531 doi: 10.1002/zamm.19960760906
|
[17] |
Wang C C, Chen C K. Mixed convection boundary layer flow of non-Newtonian fluids along vertical wavy plates. Int J Heat Fluid Flow, 2002, 23(6): 831 doi: 10.1016/S0142-727X(02)00145-5
|
[18] |
Molla M M, Hossain M A. Radiation effect on mixed convection laminar flow along a vertical wavy surface. Int J Therm Sci, 2007, 46(9): 926 doi: 10.1016/j.ijthermalsci.2006.10.010
|
[19] |
Arunachalam M, Rajappa N R. Thermal boundary layer in liquid metals with variable thermal conductivity. Appl Sci Res, 1978, 34(2): 179
|
[20] |
Pop I, Rashidi M, Gorla R S R. Mixed convection to power-law type non-newtonian fluids from a vertical wall. Polym Plast Technol Eng, 1991, 30(1): 47 doi: 10.1080/03602559108019205
|
[21] |
Subba R, Gorla R, Dakappagari V, et al. Boundary layer flow at a three-dimensional stagnation point in power-law non-Newtonian fluids. Int J Heat Fluid Flow, 1993, 14(4): 408 doi: 10.1016/0142-727X(93)90015-F
|
[22] |
Gorla R S R, Pop I, Lee J K. Convective wall plume in power-law fluid: Second-order correction for the adiabatic wall. W?rme Und Stoffübertragung, 1992, 27(8): 473
|
[23] |
Liu S N, Zheng L C. Rheological synergistic thermal conductivity of HEC-based silicon dioxide nanofluids in shear flow fields. Int J Heat Mass Transf, 2021, 181: 121896 doi: 10.1016/j.ijheatmasstransfer.2021.121896
|
[24] |
Zheng L C, Zhang X X, Ma L X. Fully developed convective heat transfer of power law fluids in a circular tube. Chin Phys Lett, 2008, 25(1): 195 doi: 10.1088/0256-307X/25/1/053
|
[25] |
Lin Y H, Zheng L C, Zhang X X, et al. MHD pseudo-plastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation. Int J Heat Mass Transf, 2015, 84: 903 doi: 10.1016/j.ijheatmasstransfer.2015.01.099
|
[26] |
Zheng L C, Lin Y H, Zhang X X. Marangoni convection of power law fluids driven by power-law temperature gradient. J Frankl Inst, 2012, 349(8): 2585 doi: 10.1016/j.jfranklin.2012.07.004
|
[27] |
Denier J P, Dabrowski P P. On the boundary-layer equations for power-law fluids. Proc R Soc Lond A, 2004, 460(2051): 3143 doi: 10.1098/rspa.2004.1349
|