Citation: | ZHANG Xian-guang, LIU Huan, ZHANG Jian, WANG Hong-li, REN Ying-jie, YANG Wen-chao, CHEN Jia-jun, SHI Peng. Controlling the formation of reverted globular austenite and the as-transformed austenite grain size in low-alloy steel based on cementite[J]. Chinese Journal of Engineering, 2023, 45(6): 915-926. doi: 10.13374/j.issn2095-9389.2022.09.27.002 |
[1] |
Grange R A. Strengthening steel by austenite grain refinement. Trans ASM, 1966, 59(1): 26
|
[2] |
Furuhara T, Kikumoto K, Saito H, et al. Phase transformation from fine-grained austenite. ISIJ Int, 2008, 48(8): 1038 doi: 10.2355/isijinternational.48.1038
|
[3] |
Matsumura N, Tokizane M. Austenite grain refinement and superplasticity in niobium microalloyed steel. ISIJ Int, 1986, 26(4): 315 doi: 10.2355/isijinternational1966.26.315
|
[4] |
Tokizane M, Ameyama K, Takao K. Ultra-fine austenite grain steel produced by thermomechanical processing. Scr Metall, 1988, 22(5): 697 doi: 10.1016/S0036-9748(88)80185-6
|
[5] |
Nikulin I, Sawaguchi T, Yoshinaka F, et al. Influence of cold rolling deformation mechanisms on the grain refinement of Fe–15Mn–10Cr–8Ni–4Si austenitic alloy. Mater Charact, 2020, 162: 110191 doi: 10.1016/j.matchar.2020.110191
|
[6] |
Mao W Q, Gao S, Bai Y, et al. Effective grain size refinement of an Fe–24Ni–0.3C metastable austenitic steel by a modified two-step cold rolling and annealing process utilizing the deformation-induced martensitic transformation and its reverse transformation. J Mater Res Technol, 2022, 17: 2690
|
[7] |
Nehrenberg A E. Growth of austenite in cold-rolled tempered martensite. JOM, 1952, 4(2): 181 doi: 10.1007/BF03397668
|
[8] |
Kimmins S T, Gooch D J. Austenite memory effect in 1Cr–1Mo–0.75V(Ti, B) steel. Met Sci, 1983, 17(11): 519
|
[9] |
Hara T, Maruyama N, Shinohara Y, et al. Abnormal α to γ transformation behavior of steels with a martensite and bainite microstructure at a slow reheating rate. ISIJ Int, 2009, 49(11): 1792 doi: 10.2355/isijinternational.49.1792
|
[10] |
Nakada N, Tsuchiyama T, Takaki S, et al. Temperature dependence of austenite nucleation behavior from lath martensite. ISIJ Int, 2011, 51(2): 299 doi: 10.2355/isijinternational.51.299
|
[11] |
Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel. Acta Mater, 2011, 59(10): 4002 doi: 10.1016/j.actamat.2011.03.025
|
[12] |
Nakada N, Tsuchiyama T, Takaki S, et al. Variant selection of reversed austenite in lath martensite. ISIJ Int, 2007, 47(10): 1527 doi: 10.2355/isijinternational.47.1527
|
[13] |
Dai Z B, Chen H, Ding R, et al. Fundamentals and application of solid-state phase transformations for advanced high strength steels containing metastable retained austenite. Mater Sci Eng R Rep, 2021, 143: 100590 doi: 10.1016/j.mser.2020.100590
|
[14] |
Li L, Mi Z L, Wang Z, et al. Modified quenching temperature selection method for partial austenitization quenching and partitioning steel. Mater Res Express, 2018, 5(6): 66553 doi: 10.1088/2053-1591/aacd1a
|
[15] |
Matsuda S, Okamura Y. Reverse transformation of low-carbon low alloy steels. Tetsu-to-Hagane, 1974, 60(2): 226 doi: 10.2355/tetsutohagane1955.60.2_226
|
[16] |
Plichta M R, Aaronson H I. Influence of alloying elements upon the morphology of austenite formed from martensite in Fe–C–X alloys. Metall Mater Trans B, 1974, 5(12): 2611 doi: 10.1007/BF02643888
|
[17] |
Seiichi W, Tatsuro K. On the formation of austenite grains from prior martensitic structure. Tetsu-to-Hagane, 1975, 61(1): 96 doi: 10.2355/tetsutohagane1955.61.1_96
|
[18] |
Nakada N, Mizutani K, Tsuchiyama T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel. Acta Mater, 2014, 65: 251 doi: 10.1016/j.actamat.2013.10.067
|
[19] |
Liu Z Q, Miyamoto G, Yang Z G, et al. Excess carbon enrichment in austenite during intercritical annealing. Metall Mater Trans A, 2013, 44(11): 4872 doi: 10.1007/s11661-013-1973-7
|
[20] |
Liu Z Q, Miyamoto G, Yang Z G, et al. Effects of pre-tempering on intercritical annealing in Fe–2Mn–0.3C alloy. Metall Mater Trans A, 2014, 45(12): 5290 doi: 10.1007/s11661-014-2519-3
|
[21] |
Zhang X G, Miyamoto G, Toji Y, et al. Orientation of austenite reverted from martensite in Fe–2Mn–1.5Si–0.3C alloy. Acta Mater, 2018, 144: 601
|
[22] |
Zhang X G, Miyamoto G, Kaneshita T, et al. Growth mode of austenite during reversion from martensite in Fe–2Mn–1.5Si–0.3C alloy: A transition in kinetics and morphology. Acta Mater, 2018, 154: 1
|
[23] |
Zhang X G, Miyamoto G, Toji Y, et al. Role of cementite and retained austenite on austenite reversion from martensite and bainite in Fe–2Mn–1.5Si–0.3C alloy. Acta Mater, 2021, 209: 116772
|
[24] |
Zhang X G, Ren Y J, Zhang J, et al. Effects of prior austenite grain size on reversion kinetics of different crystallographic austenite in a low carbon steel. Mater Charact, 2022, 190: 112025 doi: 10.1016/j.matchar.2022.112025
|
[25] |
Zhang X G, Miyamoto G, Toji Y, et al. Effects of heating rate on formation of globular and acicular austenite during reversion from martensite. Metals, 2019, 9: 266 doi: 10.3390/met9020266
|
[26] |
張獻光, 宮本吾郎, 古原忠. 加熱速率對逆轉變奧氏體微觀組織的影響. 鋼鐵, 2019, 54(2):83
Zhang X G, Miyamoto G, Furuhara T. Effects of heating rate on microstructure of reverted austenite. Iron &Steel, 2019, 54(2): 83
|
[27] |
丁然, 唐荻, 陳銀莉, 等. 退火溫度對退火馬氏體基TRIP鋼顯微組織和力學性能的影響. 北京科技大學學報, 2014, 36(11):1476
Ding R, Tang D, Chen Y L, et al. Effects of annealing temperature on the microstructure and mechanical properties of TRIP steel with annealed martensitic matrix. J Univ Sci Technol Beijing, 2014, 36(11): 1476
|
[28] |
楊德振, 熊志平, 張超, 等. 回火時間對Fe–0.39C–3.69Mn中錳鋼的組織和力學性能的影響. 鋼鐵研究學報, 2021, 33(11):1161
Yang D Z, Xiong Z P, Zhang C, et al. Effect of tempering time on microstructures and mechanical properties of an Fe–0.39C–3.69Mn medium Mn steel. J Iron Steel Res, 2021, 33(11): 1161
|
[29] |
Sugimoto K I, Kanda A, Kikuchi R, et al. Ductility and formability of newly developed high strength low alloy TRIP-aided sheet steels with annealed martensite matrix. ISIJ Int, 2002, 42(8): 910 doi: 10.2355/isijinternational.42.910
|
[30] |
佐久間健人, 西沢泰二. 定量金屬組織學. 日本金屬學會會報, 1971, 10(5):279 doi: 10.2320/materia1962.10.279
Sakuma T, Nishizawa T. Quantitative metallography. Bull Jpn Inst Met, 1971, 10(5): 279 doi: 10.2320/materia1962.10.279
|
[31] |
Miyamoto G, Usuki H, Li Z D, et al. Effects of Mn, Si and Cr addition on reverse transformation at 1073 K from spheroidized cementite structure in Fe–0.6 mass% C alloy. Acta Mater, 2010, 58(13): 4492
|
[32] |
Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels. Acta Mater, 2006, 54(19): 5323 doi: 10.1016/j.actamat.2006.07.009
|
[33] |
Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe–C alloys. Acta Mater, 2003, 51(6): 1789 doi: 10.1016/S1359-6454(02)00577-3
|
[34] |
Miyamoto G, Takayama N, Furuhara T. Accurate measurement of the orientation relationship of lath martensite and bainite by electron backscatter diffraction analysis. Scr Mater, 2009, 60(12): 1113 doi: 10.1016/j.scriptamat.2009.02.053
|
[35] |
Miyamoto G, Iwata N, Takayama N, et al. Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite. Acta Mater, 2010, 58(19): 6393 doi: 10.1016/j.actamat.2010.08.001
|
[36] |
Miyamoto G, Shinyoshi T, Yamaguchi J, et al. Crystallography of intragranular ferrite formed on (MnS+V(C, N)) complex precipitate in austenite. Scr Mater, 2003, 48(4): 371 doi: 10.1016/S1359-6462(02)00451-7
|
[37] |
Babu S S, Hono K, Sakurai T. Atom probe field ion microscopy study of the partitioning of substitutional elements during tempering of a low-alloy steel martensite. Metall Mater Trans A, 1994, 25(3): 499 doi: 10.1007/BF02651591
|
[38] |
Zhu C, Xiong X Y, Cerezo A, et al. Three-dimensional atom probe characterization of alloy element partitioning in cementite during tempering of alloy steel. Ultramicroscopy, 2007, 107(9): 808 doi: 10.1016/j.ultramic.2007.02.033
|
[39] |
Wu Y X, Sun W W, Styles M J, et al. Cementite coarsening during the tempering of Fe–C–Mn martensite. Acta Mater, 2018, 159: 209 doi: 10.1016/j.actamat.2018.08.023
|