Citation: | DAI Zhipeng, YANG Jian, ZHANG Qingsong, BAI Yun, Wu Xiaolin. Research progress on austenite grain growth and second-phase particle control technology in automotive gear steel[J]. Chinese Journal of Engineering, 2023, 45(11): 1878-1895. doi: 10.13374/j.issn2095-9389.2022.09.21.001 |
[1] |
何亮亮. Nb微合金化對20MnCr5低碳合金鋼組織及性能的影響//陜西省機械工程學會2019年論文匯編. 西安, 2022:169
He L L. The effect of Nb microalloying on the microstructure and properties of 20MnCr5 low carbon alloy steel // 2019 Papers Compilation of Shaanxi Mechanical Engineering Society. Xian, 2022: 169
|
[2] |
張曉宇, 趙夢豪, 朱強斌, 等. 20MnCr5齒輪鋼連鑄坯中硫化物三維形貌的解析. 冶金分析, 2022, 42(8):13
Zhang X Y, Zhao M H, Zhu Q B, et al. Analysis of three-dimensional morphology of sulfides in continuous casting billet of 20MnCr5 gear steel. Metall Anal, 2022, 42(8): 13
|
[3] |
史遠, 戴觀文, 黃艷新, 等. 20MnCr5齒輪鋼連續冷卻過程中的組織變化. 金屬熱處理, 2017, 42(9):128 doi: 10.13251/j.issn.0254-6051.2017.09.028
Shi Y, Dai G W, Huang Y X, et al. Microstructure evolution of 20MnCr5 gear steel during continuous cooling transformation. Heat Treat Met, 2017, 42(9): 128 doi: 10.13251/j.issn.0254-6051.2017.09.028
|
[4] |
陳暉, 周細應. 汽車齒輪鋼的研究進展. 材料科學與工程學報, 2011, 29(3):478 doi: 10.14136/j.cnki.issn1673-2812.2011.03.016
Chen H, Zhou X Y. Research progress of gear steel for automobiles. J Mater Sci Eng, 2011, 29(3): 478 doi: 10.14136/j.cnki.issn1673-2812.2011.03.016
|
[5] |
程麗杰. 國內外晶粒度標準綜述. 理化檢驗(物理分冊), 2019, 55(8):515
Cheng L J. Overview of grain size standards at home and abroad. Phys Test Chem Anal(Part A), 2019, 55 (8): 515
|
[6] |
毛衛民. 金屬的再結晶與晶粒長大. 北京:冶金工業出版社, 1994
Mao W M. Recrystallization and Grain Growth of Metals. Beijing: Metallurgical Industry Press, 1994
|
[7] |
王全山, 焦作光, 樊邯生. 鋼的球化退火機理的研究. 特殊鋼, 1982, 3(3):1
Wang Q S, Jiao Z G, Fan H S. Study on spheroidizing annealing mechanism of steel. Spec Steel, 1982, 3(3): 1
|
[8] |
高英俊, 金星, 蘇義勇, 等. 異常晶粒長大的Monte Carlo模擬方法. 廣西大學學報(自然科學版), 2009, 34(2):220 doi: 10.3969/j.issn.1001-7445.2009.02.022
Gao Y J, Jin X, Su Y Y, et al. Monte Carlo simulation of abnormal grain growth. J Guangxi Univ Nat Sci, 2009, 34(2): 220 doi: 10.3969/j.issn.1001-7445.2009.02.022
|
[9] |
徐尚呈, 周立新, 張志成, 等. 熱處理工藝對SAE4320鋼奧氏體晶粒度的影響. 金屬熱處理, 2014, 39(11):111
Xu S C, Zhou L X, Zhang Z C, et al. Effect of heat treatment process on austenite grain size of SAE4320 steel. Heat Treat Met, 2014, 39(11): 111
|
[10] |
Novikov V Y. Microstructure evolution during grain growth in materials with disperse particles. Mater Lett, 2012, 68: 413 doi: 10.1016/j.matlet.2011.10.101
|
[11] |
Bréchet Y, Militzer M. A note on grain size dependent pinning. Scr Mater, 2005, 52(12): 1299 doi: 10.1016/j.scriptamat.2005.02.021
|
[12] |
Beck P A, Kremer J C, Demer L. Grain growth in high purity aluminum. Phys Rev, 1947, 71(8): 555
|
[13] |
Hillert M. On the theory of normal and abnormal grain growth. Acta Metall, 1965, 13(3): 227 doi: 10.1016/0001-6160(65)90200-2
|
[14] |
Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling. Met Sci, 1979, 13(3-4): 187 doi: 10.1179/msc.1979.13.3-4.187
|
[15] |
Lee S J, Lee Y K. Prediction of austenite grain growth during austenitization of low alloy steels. Mater Des, 2008, 29(9): 1840 doi: 10.1016/j.matdes.2008.03.009
|
[16] |
Hu H, Rath B B. On the time exponent in isothermal grain growth. Metall Trans, 1970, 1(11): 3181 doi: 10.1007/BF03038435
|
[17] |
Nishizawa T. Grain growth in single-and dual-phase steels. Tetsu-to-Hagane, 1984, 70(15): 1984 doi: 10.2355/tetsutohagane1955.70.15_1984
|
[18] |
Jiao S, Penning J, Leysen F, et al. The modeling of the grain growth in a continuous reheating process of a low carbon Si?Mn bearing TRIP steel. ISIJ Int, 2000, 40(10): 1035 doi: 10.2355/isijinternational.40.1035
|
[19] |
Moon J, Lee J, Lee C. Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel. Mater Sci Eng A, 2007, 459(1-2): 40 doi: 10.1016/j.msea.2006.12.073
|
[20] |
岳重祥, 張立文, 廖舒綸, 等. GCr15鋼奧氏體晶粒長大規律研究. 材料熱處理學報, 2008, 29(1):94 doi: 10.13289/j.issn.1009-6264.2008.01.036
Yue C X, Zhang L W, Liao S L, et al. Research on austenite grain growth behavior of GCr15 steel. Trans Mater Heat Treat, 2008, 29(1): 94 doi: 10.13289/j.issn.1009-6264.2008.01.036
|
[21] |
朱小星, 王寶雨, 付曉斌. 齒輪鋼SAE8620H奧氏體晶粒長大演化規律. 材料熱處理學報, 2015, 32(S2):242
Zhu X X, Wang B Y, Fu X B. Evolution of austenite grain growth in gear steel SAE8620H. Trans Mater Heat Treat, 2015, 32(Suppl 2): 242
|
[22] |
楊少朋, 尉文超, 胡芳忠, 等. 低碳齒輪鋼18CrNiMo7-6奧氏體晶粒度長大規律. 材料導報, 2021, 35(8):8179 doi: 10.11896/cldb.20020030
Yang S P, Yu W C, Hu F Z, et al. The austenite grain growth behavior of low carbon gear steel 18CrNiMo7-6. Mater Rep, 2021, 35(8): 8179 doi: 10.11896/cldb.20020030
|
[23] |
楊延輝, 王毛球, 王春芳, 等. 鈦鈮微合金化齒輪鋼的奧氏體晶粒長大研究. 鋼鐵研究學報, 2012, 24(12):32 doi: 10.13228/j.boyuan.issn1001-0963.2012.12.011
Yang Y H, Wang M Q, Wang C F, et al. Austenite grain growth in Ti and Nb microalloyed gear steels. J Iron Steel Res, 2012, 24(12): 32 doi: 10.13228/j.boyuan.issn1001-0963.2012.12.011
|
[24] |
包爽, 楊庚蔚, 徐耀文, 等. 中錳馬氏體NM500鋼奧氏體晶粒長大行為. 鋼鐵, 2022, 57(8):152
Bao S, Yang G W, Xu Y W, et al. Austenite grain growth behavior of medium manganese martensitic NM500 steel. Steel, 2022, 57(8): 152
|
[25] |
He G, Zhu X, Jiang B, et al. Grain growth behavior of niobium microalloyed 20MnCr5 steel and the effect of boron. Materialwiss Werkstofftech, 2022, 53(5): 547 doi: 10.1002/mawe.202100065
|
[26] |
Gladman T. On the theory of the effect of precipitate particles on grain growth in metals. Proc R Soc Lond A, 1966, 294(1438): 298 doi: 10.1098/rspa.1966.0208
|
[27] |
Smith C S. Grains, phases, and interfaces: An introduction of microstructure. Trans AIME, 1948, 175: 15
|
[28] |
Haroun N A, Budworth D W. Modifications to the Zener formula for limitation of grain size. J Mater Sci, 1968, 3(3): 326 doi: 10.1007/BF00741970
|
[29] |
Nes E, Ryum N, Hunderi O. On the zener drag. Acta Metall, 1985, 33(1): 11 doi: 10.1016/0001-6160(85)90214-7
|
[30] |
Elst R, van Humbeeck J, Delaey L. Evaluation of grain growth criteria in particle-containing materials. Acta Metall, 1988, 36(7): 1723 doi: 10.1016/0001-6160(88)90240-4
|
[31] |
Rios P R. On the relationship between pinning force and limiting grain radius. Scr Mater, 1996, 34(8): 1185 doi: 10.1016/1359-6462(95)00641-9
|
[32] |
Kad B K, Hazzledine P M. Monte Carlo simulations of grain growth and Zener pinning. Mater Sci Eng A, 1997, 238(1): 70 doi: 10.1016/S0921-5093(97)00435-8
|
[33] |
Moon J, Kim S, Lee J, et al. Limiting austenite grain size of TiN-containing steel considering the critical particle size. Scr Mater, 2007, 56(12): 1083 doi: 10.1016/j.scriptamat.2007.02.025
|
[34] |
周超, 王毛球, 董瀚, 等. 38CrMoAl鋼奧氏體晶粒長大動力學研究. 鋼鐵, 2010, 45(12):73 doi: 10.13228/j.boyuan.issn0449-749x.2010.12.004
Zhou C, Wang M Q, Dong H, et al. Investigation on kinetics of austenite grain growth of 38CrMoAl steel. Steel, 2010, 45(12): 73 doi: 10.13228/j.boyuan.issn0449-749x.2010.12.004
|
[35] |
Moon J, Lee C. Pinning efficiency of austenite grain boundary by a cubic shaped TiN particle in hot rolled HSLA steel. Mater Charact, 2012, 73: 31 doi: 10.1016/j.matchar.2012.07.003
|
[36] |
Ma W J, Bao Y P, Zhao L H, et al. Control of the precipitation of TiN inclusions in gear steels. Intl J Miner Metall Mater, 2014, 21(3): 234 doi: 10.1007/s12613-014-0900-2
|
[37] |
齊建軍, 李紹杰. 鋁氮比對轎車用滲碳鋼晶粒混晶的影響. 河北冶金, 2015(2):1 doi: 10.13630/j.cnki.13-1172.2015.0201
Qi J J, Li S J. Effect of Al-N ratio on grain blending of carburized steel for cars. Hebei Metall, 2015(2): 1 doi: 10.13630/j.cnki.13-1172.2015.0201
|
[38] |
郭海濱, 左秀榮, 張新理, 等. X80M管線鋼奧氏體晶粒粗化及Nb/Ti的固溶析出行為. 熱加工工藝, 2016, 45(10):1 doi: 10.14158/j.cnki.1001-3814.2016.10.001
Guo H B, Zuo X R, Zhang X L, et al. Austenite grain coarsening and Nb/Ti solution precipitation behavior of X80M pipeline steel. Hot Work Technol, 2016, 45(10): 1 doi: 10.14158/j.cnki.1001-3814.2016.10.001
|
[39] |
李堯, 成國光, 魯金龍, 等. 20CrMnTi齒輪鋼中TiN析出相對淬透性的影響. 鋼鐵, 2021, 56(1):75
Li Y, Cheng G G, Lu J L, et al. Effect of TiN precipitation on hardenability of 20CrMnTi gear steel. Steel, 2021, 56(1): 75
|
[40] |
雍岐龍. 鋼鐵中的第二相. 北京:冶金工業出版社, 2006
Yong Q L. The Second Phase in Steel Materials. Beijing: Metallurgical Industry Press, 2006
|
[41] |
黃英, 張珉. 不同因素對C?Mn鋼晶粒長大趨勢的影響//中國金屬學會軋鋼學會鋼管學術委員會五屆三次年會. 西安, 2007:391
Huang Y, Zhang M. Influence of different factors on the grain growth trend of C?Mn steel // The Third Annual Meeting of the Fifth Steel Pipe Academic Committee of the Steel Rolling Society of the Chinese Society of Metals. Xi’an, 2007: 391
|
[42] |
崔忠坼. 金屬學與熱處理. 北京:機械工業出版社, 2000
Cui Z H. Metallography and Heat Treatment. Beijing: China Machine Press, 2000
|
[43] |
張朝磊, 邵洙浩, 李戩, 等. 鈮微合金化技術在中高碳鋼中的應用現狀與發展. 材料導報, 2021, 35(5):5102 doi: 10.11896/cldb.20010139
Zhang C L, Shao Z H, Li J, et al. Application and development of niobium microalloying technology in medium and high carbon steel. Mater Rep, 2021, 35 (5): 5102 doi: 10.11896/cldb.20010139
|
[44] |
董企銘, 李炎, 江錫堂, 等. 20Cr2Ni4A鋼混晶機理的初步研究. 洛陽工學院學報, 1987(2):1
Dong Q M, Li Y, Jiang X T, et al. A preliminary study on the mixed crystal mechanism of 20Cr2Ni4A steel. J Luoyang Inst Technol, 1987(2): 1
|
[45] |
李文卿, 張小紅, 高寧, 等. 鋁、鈦、釩和鈮對中碳鋼奧氏體晶粒度的影響. 北京科技大學學報, 1990, 12(5):437
Li W Q, Zhang X H, Gao N, et al. The effect of Al, Ti, V and Nb on austenite grain size of medium carbon steels. J Univ Scie Technol Beijing, 1990, 12(5): 437
|
[46] |
Kubota M, Ochi T. Development of anti-coarsening steel for carburizing. Mater Sci Forum, 2007, 539: 4855
|
[47] |
孫后金, 張永安, 張三平. 22CrMoH齒輪鋼奧氏體晶粒度影響因素及混晶原因分析. 山東冶金, 2019, 41(6):29 doi: 10.16727/j.cnki.issn1004-4620.2019.06.011
Sun H J, Zhang Y A, Zhang S P. Analysis of influencing factors on austenite grain size of 22CrMoH gear steel and reasons for mixed grain. Shandong Metallurgy, 2019, 41(6): 29 doi: 10.16727/j.cnki.issn1004-4620.2019.06.011
|
[48] |
劉華松, 董延楠, 鄭宏光, 等. Nb微合金化對齒輪鋼高溫滲碳奧氏體晶粒度的影響. 鋼鐵研究學報, 2021, 33(8):828
Liu H S, Dong Y N, Zheng H G, et al. Effect of Nb microalloying on austenite grain size of high temperature carburized gear steel. J Iron Steel Res, 2021, 33(8): 828
|
[49] |
李潤霞, 喻書贏, 王宇. 汽車齒輪用滲碳鋼20MnCr5晶粒度的影響因素. 金屬世界, 2022(4):72
Li R X, Yu S Y, Wang Y. Factors of grain size for automobile gear steel 20MnCr5. Met World, 2022(4): 72
|
[50] |
Bepari M A. Effects of second-phase particles on coarsening of austenite in 0.15 Pct carbon steels. Metall Trans A, 1989, 20(1): 13
|
[51] |
Liu Z Y, Bao Y P, Wang M, et al. Austenite grain growth of medium-carbon alloy steel with aluminum additions during heating process. Int J Miner Metall Mater, 2019, 26(3): 282 doi: 10.1007/s12613-019-1736-6
|
[52] |
Sun L Y, Liu X, Xu X, et al. Review on niobium application in microalloyed steel. J Iron Steel Res Int, 2022, 29(10): 1513 doi: 10.1007/s42243-022-00789-1
|
[53] |
Yu Q B, Sun Y. Abnormal growth of austenite grain of low-carbon steel. Mater Sci Eng A, 2006, 420(1-2): 34 doi: 10.1016/j.msea.2006.01.027
|
[54] |
程四華, 周德, 孔祥濤, 等. Nb微合金化對高碳鋼奧氏體晶粒生長的影響. 金屬熱處理, 2014, 39(5):54 doi: 10.13251/j.issn.0254-6051.2014.05.014
Cheng S H, Zhou D, Kong X T, et al. Effect of Nb microalloying on austenite grain growth of high carbon steel. Heat Treat Met, 2014, 39(5): 54 doi: 10.13251/j.issn.0254-6051.2014.05.014
|
[55] |
Gray J M, Yeo R B G. Niobium carbonitride precipitation in low-alloy steels with particular emphasis on precipitate-row formation. ASM-Trans, 1968, 61(2): 255
|
[56] |
肖榮亭, 于浩, 周平. Q1030焊接高強鋼的奧氏體晶粒異常長大機理. 北京科技大學學報, 2011, 33(12):1458 doi: 10.13374/j.issn1001-053x.2011.12.006
Xiao R T, Yu H, Zhou P. Abnormal grain growth mechanism of austenite in high-strength welded steel Q103. J Univ Sci Technol Beijing, 2011, 33(12): 1458 doi: 10.13374/j.issn1001-053x.2011.12.006
|
[57] |
張國強, 何肖飛, 尉文超, 等. 高溫滲碳齒輪鋼的晶粒粗化行為. 鋼鐵, 2019, 54(5):68 doi: 10.13228/j.boyuan.issn0449-749x.20180369
Zhang G Q, He X F, Wei W C, et al. Grain coarsening behavior of high temperature carburized gear steel. Steel, 2019, 54(5): 68 doi: 10.13228/j.boyuan.issn0449-749x.20180369
|
[58] |
Ma F J, Wen G H, Wang W L. Effect of cooling rates on the second-phase precipitation and proeutectoid phase transformation of a Nb-Ti microalloyed steel slab. Steel Res Int, 2013, 84(4): 370 doi: 10.1002/srin.201200161
|
[59] |
劉清友, 董瀚, 孫新軍, 等. CSP工藝中含Nb鋼的混晶問題及改善方法. 鋼鐵, 2003(8):16 doi: 10.3321/j.issn:0449-749X.2003.08.003
Liu Q Y, Dong H, Sun X J, et al. Mixed grain problem of Nb containing steel in CSP process and its improvement method. Steel, 2003(8): 16 doi: 10.3321/j.issn:0449-749X.2003.08.003
|
[60] |
Yuan X Q, Liu Z Y, Jiao S H, et al. The onset temperatures of γ to α-phase transformation in hot deformed and non-deformed Nb micro-alloyed steels. ISIJ Int, 2006, 46(4): 579 doi: 10.2355/isijinternational.46.579
|
[61] |
劉燕, 王毛球, 樊剛, 等. 含鈮齒輪鋼的晶粒長大動力學. 鋼鐵研究學報, 2008(11):37 doi: 10.13228/j.boyuan.issn1001-0963.2008.11.010
Liu Y, Wang M Q, Fan G, et al. Grain growth kinetics of niobium bearing gear steel. J Iron Steel Res, 2008(11): 37 doi: 10.13228/j.boyuan.issn1001-0963.2008.11.010
|
[62] |
馬莉, 王毛球, 徐香秋, 等. 鈮硼微合金化齒輪鋼的晶粒尺寸及淬透性. 材料熱處理學報, 2009, 30(5):74 doi: 10.13289/j.issn.1009-6264.2009.05.034
Ma L, Wang M Q, Xu X Q, et al. Austenite grain size and hardenability of Nb-B microalloyed gear steels. Trans Mater Heat Treat, 2009, 30(5): 74 doi: 10.13289/j.issn.1009-6264.2009.05.034
|
[63] |
佟倩, 崔京玉, 柳洋波, 等. Nb含量對20CrMnTiH鋼奧氏體晶粒長大行為的影響. 金屬熱處理, 2014, 39(7):39 doi: 10.13251/j.issn.0254-6051.2014.07.009
Tong Q, Cui J Y, Liu Y B, et al. Effect of Nb content on austenite grain growth behavior of 20CrMnTiH steel. Heat Treat Met, 2014, 39(7): 39 doi: 10.13251/j.issn.0254-6051.2014.07.009
|
[64] |
賈羽, 方光錦, 史文輝, 等. 20MnCr5?Nb鋼的晶粒粗化行為分析與研究. 甘肅冶金, 2020, 42(5):45 doi: 10.3969/j.issn.1672-4461.2020.05.013
Jia Y, Fang G J, Shi W H, et al. Analysis and study on grain coarsening behavior of 20MnCr5?Nb steel. Gansu Metallurgy, 2020, 42(5): 45 doi: 10.3969/j.issn.1672-4461.2020.05.013
|
[65] |
顧鐵. 滲碳齒輪鋼AlN固溶行為的研究. 工程技術研究, 2021, 3(9):161 doi: 10.3969/j.issn.1671-3818.2021.09.077
Gu Tie. Research on AlN solution behavior of carburized gear steel. Eng Technol Res, 2021, 3(9): 161 doi: 10.3969/j.issn.1671-3818.2021.09.077
|
[66] |
張永青, 楊雄, 魯麗燕, 等. Nb微合金化HRB400鋼筋加熱溫度的研究//2007中國鋼鐵年會論文集. 成都, 2007:832
Zhang Y Q, Yang X, Lu L Y, et al. Research on heating temperature of Nb microalloyed HRB400 steel bars // Proceedings of 2007 China Iron and Steel Annual Conference. Chengdu, 2007: 832
|
[67] |
楊延輝, 王毛球, 陳敬超, 等. 高溫滲碳齒輪鋼的研究進展. 特殊鋼, 2013, 34(1):22 doi: 10.3969/j.issn.1003-8620.2013.01.006
Yang Y H, Wang M Q, Chen J C, et al. Research progress of high temperature carburized gear steel. Spec Steel, 2013, 34(1): 22 doi: 10.3969/j.issn.1003-8620.2013.01.006
|
[68] |
Huang K, Logé R E. Zener Pinning. Elsevier, 2016
|
[69] |
黃健. 齒輪鋼滲碳熱處理過程中的晶粒異常長大現象研究[學位論文]. 沈陽:東北大學, 2020
Huang J. Investigation on Abnormal Grain Growth Phenomenon During Carburizing Heat Treatment of Gear Steel [Dissertation]. Shenyang: Dongbei University, 2010
|
[70] |
W?rner Dr Fia C H, Hazzledine P M. Grain growth stagnation by inclusions or pores. JOM, 1992, 44(9): 16 doi: 10.1007/BF03222320
|
[71] |
王秉新, 劉相華, 王國棟, 等. 齒輪鋼20CrMoNb奧氏體晶粒尺寸及相變行為. 材料科學與工藝, 2009, 17(5):620
Wang B X, Liu X H, Wang G D, et al. Austenite grain size and continuous cooling transformation behavior in gear steel 20CrMoNb gear steel. Mater Sci Technol, 2009, 17(5): 620
|
[72] |
Maalekian M, Radis R, Militzer M, et al. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel. Acta Mater, 2012, 60(3): 1015 doi: 10.1016/j.actamat.2011.11.016
|
[73] |
Zhang X G, Matsuura K, Ohno M. Abnormal grain growth in austenite structure reversely transformed from ferrite/pearlite-banded structure. Metall Mater Trans A, 2014, 45(10): 4623 doi: 10.1007/s11661-014-2364-4
|
[74] |
Gu Y, Tian P, Wang X, et al. Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process. Mater Des, 2016, 89: 589 doi: 10.1016/j.matdes.2015.09.039
|
[75] |
Jiang B, Wu M, Sun H, et al. Prediction model of austenite growth and the role of MnS inclusions in non-quenched and tempered steel. Met Mater Int, 2018, 24(1): 15 doi: 10.1007/s12540-017-7012-2
|
[76] |
Liu H S, Dong Y N, Zheng H G, et al. Precipitation criterion for inhibiting austenite grain coarsening during carburization of Al-containing 20Cr gear steels. Metals, 2021, 11(3): 504 doi: 10.3390/met11030504
|
[77] |
羅瀚宇, 曹建春, 曾敏, 等. Zr對Ti微合金化低碳鋼形變奧氏體再結晶和析出相的影響. 材料研究學報, 2022, 36(2):123
Luo H Y, Cao J C, Zeng M, et al. Effect of Zr on deformed austenite recrystallization and precipitates in austenite in Ti-microalloyed low carbon steel. Chin J Mater Res, 2022, 36(2): 123
|
[78] |
楊林, 邵亮, 喬兵, 等. 含Nb齒輪鋼晶粒度研究. 汽車工藝與材料, 2004, (7):5 doi: 10.3969/j.issn.1003-8817.2004.07.002
Yang L, Shao L, Qiao B, et al. The study on grain size of Nb gear steel. Automob Technol Mater, 2004(7): 5 doi: 10.3969/j.issn.1003-8817.2004.07.002
|
[79] |
柳洋波, 崔京玉, 佟倩, 等. 鈮對20CrMnTi鋼滲碳過程中晶粒粗化行為的影響. 材料熱處理學報, 2015, 36(1):124 doi: 10.13289/j.issn.1009-6264.2015.01.025
Liu Y B, Cui J Y, Tong Q, et al. Effect of Nb on grain coarsening behavior of 20CrMnTi steel during carburizing. Trans Mater Heat Treat, 2015, 36(1): 124 doi: 10.13289/j.issn.1009-6264.2015.01.025
|
[80] |
Dong D Q, Chen F, Cui Z S. Modeling of austenite grain growth during austenitization in a low alloy steel. J of Materi Eng and Perform, 2016, 25(1): 152 doi: 10.1007/s11665-015-1810-9
|
[81] |
Zhang L C, Wen X L, Liu Y Z. Effect of precipitates on austenite grain growth behavior in a low-carbon Nb–V microalloyed steel. Mater Sci Forum, 2017, 898: 783 doi: 10.4028/www.scientific.net/MSF.898.783
|
[82] |
申群芳, 吳少斌. 20CrMnTi“混晶”分析. 現代機械, 2011(3):90 doi: 10.3969/j.issn.1002-6886.2011.03.032
Shen Q F, Wu S B. “Mixed crystal” analysis of 20CrMnTi. Mod Mach, 2011(3): 90 doi: 10.3969/j.issn.1002-6886.2011.03.032
|
[83] |
高元安, 葉健熠, 王智勇, 等. Cr4Mo4V鋼球淬火產生混晶組織的原因與消除措施. 軸承, 2013(10):40 doi: 10.3969/j.issn.1000-3762.2013.10.014
Gao Y A, Ye J Y, Wang Z Y, et al. The reason and elimination of mixed crystal structure in Cr4Mo4V steel ball quenching. Bearing, 2013(10): 40 doi: 10.3969/j.issn.1000-3762.2013.10.014
|
[84] |
宋海剛. F91鋼的混晶原因以及消除方法. 中國金屬通報, 2017(8):71
Song H G. Causes and elimination methods of mixed crystal of F91 steel. China Mel Bull, 2017(8): 71
|
[85] |
劉秀蓮, 班君, 羅燕, 等. 消除8Cr4Mo4V鋼“混晶”試驗研究. 熱加工工藝, 2018, 47(14):165 doi: 10.14158/j.cnki.1001-3814.2018.14.043
Liu X L, Ban J, Luo Y, et al. Experimental study on eliminating "mixed crystal" of 8Cr4Mo4V steel. Hot Working Process, 2018, 47(14): 165 doi: 10.14158/j.cnki.1001-3814.2018.14.043
|
[86] |
冶廷全, 楊國, 馬恒春, 等. 熱處理工藝對16MnCrS5+H鋼奧氏體晶粒度的影響. 甘肅冶金, 2020, 42(5):59 doi: 10.3969/j.issn.1672-4461.2020.05.016
Ye T Q, Yang G, Ma H C, et al. Effect of heat treatment process on austenite grain size of 16MnCrS5+H steel. Gansu Metallurgy, 2020, 42(5): 59 doi: 10.3969/j.issn.1672-4461.2020.05.016
|
[87] |
黃道龍, 吳翔云, 侯清宇, 等. 加熱工藝對16MnCr5H鋼奧氏體晶粒度的影響. 熱處理, 2022, 37(2):46 doi: 10.3969/j.issn.1008-1690.2022.02.011
Huang D L, Wu X Y, Hou Q Y, et al. Effect of heating process on austenite grain size of 16MnCr5H steel. Heat Treat, 2022, 37(2): 46 doi: 10.3969/j.issn.1008-1690.2022.02.011
|