<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
DAI Zhipeng, YANG Jian, ZHANG Qingsong, BAI Yun, Wu Xiaolin. Research progress on austenite grain growth and second-phase particle control technology in automotive gear steel[J]. Chinese Journal of Engineering, 2023, 45(11): 1878-1895. doi: 10.13374/j.issn2095-9389.2022.09.21.001
Citation: DAI Zhipeng, YANG Jian, ZHANG Qingsong, BAI Yun, Wu Xiaolin. Research progress on austenite grain growth and second-phase particle control technology in automotive gear steel[J]. Chinese Journal of Engineering, 2023, 45(11): 1878-1895. doi: 10.13374/j.issn2095-9389.2022.09.21.001

Research progress on austenite grain growth and second-phase particle control technology in automotive gear steel

doi: 10.13374/j.issn2095-9389.2022.09.21.001
More Information
  • Corresponding author: E-mail: yang_jian@t.shu.edu.cn
  • Received Date: 2022-09-21
    Available Online: 2023-02-07
  • Publish Date: 2023-11-01
  • With the implementation of the global two-carbon policy, energy saving and CO2 emission reduction have become important developmental goals of the automobile manufacturing industry. At present, the combination of high temperature for the automobile gear steel and short carburizing time is the most direct carbon reduction countermeasure for gear production enterprises. However, the problem of abnormally coarsened austenite grains often occurs in the high-temperature carburization of gear steel. With the increase in carburizing temperature, the degree of mixing crystals becomes serious. As a requirement of gear manufacturing enterprises, microalloying is carried out on the carburized gear steel. Upon the addition of microalloying elements, the second-phase particles are precipitated during heating, and the pinning effect is generated to prevent the movement of austenite grain boundaries, thus preventing the abnormal growth of austenite grains. Although the second-phase particles precipitate at the usual carburizing temperature, the partial solid solution of particles appears. In this work, the effects of the heating temperature and holding time on the austenite grain size of gear steel are studied to clarify the mechanisms of complex austenite grain growth and second-phase particle precipitation for the realization of fine austenite grain size after high-temperature carburization. The influence of the contents of microalloying elements (Nb, Al) on the pinning effect, precipitation position, and solution temperature of the second-phase particles (Nb (C, N)/AlN) are also discussed. Austenite grain growth models, critical sizes of austenite grain abnormal growth, and pinning force models of second-phase particles are summarized. The austenite grain growth model is based on the Beck equation, and the most common models are the modified Sellars and Arrhenius models. For the study of the inhibition effect on austenite grains, the pinning force model is used to study the critical size of austenite by modifying the dimensionless constant (A) of the Zener equation mainly through the pinning effect (Pz) produced by all particles on the grain boundary. After the experimental data are obtained, the trend of austenite growth can be predicted accurately by fitting the curve using the mathematical method. The precipitated second-phase particles are generally distributed along the grain boundary. Nb (C, N) particles have a higher solution temperature than AlN particles, so they are more stable at high temperatures. When the temperature exceeds the grain coarsening temperature, the precipitated particles become dissolved or coarsened. The mixed crystal structure generally starts to appear at about 1000 ℃, and adding the appropriate amount of microalloying elements can increase the coarsening temperature.

     

  • loading
  • [1]
    何亮亮. Nb微合金化對20MnCr5低碳合金鋼組織及性能的影響//陜西省機械工程學會2019年論文匯編. 西安, 2022:169

    He L L. The effect of Nb microalloying on the microstructure and properties of 20MnCr5 low carbon alloy steel // 2019 Papers Compilation of Shaanxi Mechanical Engineering Society. Xian, 2022: 169
    [2]
    張曉宇, 趙夢豪, 朱強斌, 等. 20MnCr5齒輪鋼連鑄坯中硫化物三維形貌的解析. 冶金分析, 2022, 42(8):13

    Zhang X Y, Zhao M H, Zhu Q B, et al. Analysis of three-dimensional morphology of sulfides in continuous casting billet of 20MnCr5 gear steel. Metall Anal, 2022, 42(8): 13
    [3]
    史遠, 戴觀文, 黃艷新, 等. 20MnCr5齒輪鋼連續冷卻過程中的組織變化. 金屬熱處理, 2017, 42(9):128 doi: 10.13251/j.issn.0254-6051.2017.09.028

    Shi Y, Dai G W, Huang Y X, et al. Microstructure evolution of 20MnCr5 gear steel during continuous cooling transformation. Heat Treat Met, 2017, 42(9): 128 doi: 10.13251/j.issn.0254-6051.2017.09.028
    [4]
    陳暉, 周細應. 汽車齒輪鋼的研究進展. 材料科學與工程學報, 2011, 29(3):478 doi: 10.14136/j.cnki.issn1673-2812.2011.03.016

    Chen H, Zhou X Y. Research progress of gear steel for automobiles. J Mater Sci Eng, 2011, 29(3): 478 doi: 10.14136/j.cnki.issn1673-2812.2011.03.016
    [5]
    程麗杰. 國內外晶粒度標準綜述. 理化檢驗(物理分冊), 2019, 55(8):515

    Cheng L J. Overview of grain size standards at home and abroad. Phys Test Chem Anal(Part A), 2019, 55 (8): 515
    [6]
    毛衛民. 金屬的再結晶與晶粒長大. 北京:冶金工業出版社, 1994

    Mao W M. Recrystallization and Grain Growth of Metals. Beijing: Metallurgical Industry Press, 1994
    [7]
    王全山, 焦作光, 樊邯生. 鋼的球化退火機理的研究. 特殊鋼, 1982, 3(3):1

    Wang Q S, Jiao Z G, Fan H S. Study on spheroidizing annealing mechanism of steel. Spec Steel, 1982, 3(3): 1
    [8]
    高英俊, 金星, 蘇義勇, 等. 異常晶粒長大的Monte Carlo模擬方法. 廣西大學學報(自然科學版), 2009, 34(2):220 doi: 10.3969/j.issn.1001-7445.2009.02.022

    Gao Y J, Jin X, Su Y Y, et al. Monte Carlo simulation of abnormal grain growth. J Guangxi Univ Nat Sci, 2009, 34(2): 220 doi: 10.3969/j.issn.1001-7445.2009.02.022
    [9]
    徐尚呈, 周立新, 張志成, 等. 熱處理工藝對SAE4320鋼奧氏體晶粒度的影響. 金屬熱處理, 2014, 39(11):111

    Xu S C, Zhou L X, Zhang Z C, et al. Effect of heat treatment process on austenite grain size of SAE4320 steel. Heat Treat Met, 2014, 39(11): 111
    [10]
    Novikov V Y. Microstructure evolution during grain growth in materials with disperse particles. Mater Lett, 2012, 68: 413 doi: 10.1016/j.matlet.2011.10.101
    [11]
    Bréchet Y, Militzer M. A note on grain size dependent pinning. Scr Mater, 2005, 52(12): 1299 doi: 10.1016/j.scriptamat.2005.02.021
    [12]
    Beck P A, Kremer J C, Demer L. Grain growth in high purity aluminum. Phys Rev, 1947, 71(8): 555
    [13]
    Hillert M. On the theory of normal and abnormal grain growth. Acta Metall, 1965, 13(3): 227 doi: 10.1016/0001-6160(65)90200-2
    [14]
    Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling. Met Sci, 1979, 13(3-4): 187 doi: 10.1179/msc.1979.13.3-4.187
    [15]
    Lee S J, Lee Y K. Prediction of austenite grain growth during austenitization of low alloy steels. Mater Des, 2008, 29(9): 1840 doi: 10.1016/j.matdes.2008.03.009
    [16]
    Hu H, Rath B B. On the time exponent in isothermal grain growth. Metall Trans, 1970, 1(11): 3181 doi: 10.1007/BF03038435
    [17]
    Nishizawa T. Grain growth in single-and dual-phase steels. Tetsu-to-Hagane, 1984, 70(15): 1984 doi: 10.2355/tetsutohagane1955.70.15_1984
    [18]
    Jiao S, Penning J, Leysen F, et al. The modeling of the grain growth in a continuous reheating process of a low carbon Si?Mn bearing TRIP steel. ISIJ Int, 2000, 40(10): 1035 doi: 10.2355/isijinternational.40.1035
    [19]
    Moon J, Lee J, Lee C. Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel. Mater Sci Eng A, 2007, 459(1-2): 40 doi: 10.1016/j.msea.2006.12.073
    [20]
    岳重祥, 張立文, 廖舒綸, 等. GCr15鋼奧氏體晶粒長大規律研究. 材料熱處理學報, 2008, 29(1):94 doi: 10.13289/j.issn.1009-6264.2008.01.036

    Yue C X, Zhang L W, Liao S L, et al. Research on austenite grain growth behavior of GCr15 steel. Trans Mater Heat Treat, 2008, 29(1): 94 doi: 10.13289/j.issn.1009-6264.2008.01.036
    [21]
    朱小星, 王寶雨, 付曉斌. 齒輪鋼SAE8620H奧氏體晶粒長大演化規律. 材料熱處理學報, 2015, 32(S2):242

    Zhu X X, Wang B Y, Fu X B. Evolution of austenite grain growth in gear steel SAE8620H. Trans Mater Heat Treat, 2015, 32(Suppl 2): 242
    [22]
    楊少朋, 尉文超, 胡芳忠, 等. 低碳齒輪鋼18CrNiMo7-6奧氏體晶粒度長大規律. 材料導報, 2021, 35(8):8179 doi: 10.11896/cldb.20020030

    Yang S P, Yu W C, Hu F Z, et al. The austenite grain growth behavior of low carbon gear steel 18CrNiMo7-6. Mater Rep, 2021, 35(8): 8179 doi: 10.11896/cldb.20020030
    [23]
    楊延輝, 王毛球, 王春芳, 等. 鈦鈮微合金化齒輪鋼的奧氏體晶粒長大研究. 鋼鐵研究學報, 2012, 24(12):32 doi: 10.13228/j.boyuan.issn1001-0963.2012.12.011

    Yang Y H, Wang M Q, Wang C F, et al. Austenite grain growth in Ti and Nb microalloyed gear steels. J Iron Steel Res, 2012, 24(12): 32 doi: 10.13228/j.boyuan.issn1001-0963.2012.12.011
    [24]
    包爽, 楊庚蔚, 徐耀文, 等. 中錳馬氏體NM500鋼奧氏體晶粒長大行為. 鋼鐵, 2022, 57(8):152

    Bao S, Yang G W, Xu Y W, et al. Austenite grain growth behavior of medium manganese martensitic NM500 steel. Steel, 2022, 57(8): 152
    [25]
    He G, Zhu X, Jiang B, et al. Grain growth behavior of niobium microalloyed 20MnCr5 steel and the effect of boron. Materialwiss Werkstofftech, 2022, 53(5): 547 doi: 10.1002/mawe.202100065
    [26]
    Gladman T. On the theory of the effect of precipitate particles on grain growth in metals. Proc R Soc Lond A, 1966, 294(1438): 298 doi: 10.1098/rspa.1966.0208
    [27]
    Smith C S. Grains, phases, and interfaces: An introduction of microstructure. Trans AIME, 1948, 175: 15
    [28]
    Haroun N A, Budworth D W. Modifications to the Zener formula for limitation of grain size. J Mater Sci, 1968, 3(3): 326 doi: 10.1007/BF00741970
    [29]
    Nes E, Ryum N, Hunderi O. On the zener drag. Acta Metall, 1985, 33(1): 11 doi: 10.1016/0001-6160(85)90214-7
    [30]
    Elst R, van Humbeeck J, Delaey L. Evaluation of grain growth criteria in particle-containing materials. Acta Metall, 1988, 36(7): 1723 doi: 10.1016/0001-6160(88)90240-4
    [31]
    Rios P R. On the relationship between pinning force and limiting grain radius. Scr Mater, 1996, 34(8): 1185 doi: 10.1016/1359-6462(95)00641-9
    [32]
    Kad B K, Hazzledine P M. Monte Carlo simulations of grain growth and Zener pinning. Mater Sci Eng A, 1997, 238(1): 70 doi: 10.1016/S0921-5093(97)00435-8
    [33]
    Moon J, Kim S, Lee J, et al. Limiting austenite grain size of TiN-containing steel considering the critical particle size. Scr Mater, 2007, 56(12): 1083 doi: 10.1016/j.scriptamat.2007.02.025
    [34]
    周超, 王毛球, 董瀚, 等. 38CrMoAl鋼奧氏體晶粒長大動力學研究. 鋼鐵, 2010, 45(12):73 doi: 10.13228/j.boyuan.issn0449-749x.2010.12.004

    Zhou C, Wang M Q, Dong H, et al. Investigation on kinetics of austenite grain growth of 38CrMoAl steel. Steel, 2010, 45(12): 73 doi: 10.13228/j.boyuan.issn0449-749x.2010.12.004
    [35]
    Moon J, Lee C. Pinning efficiency of austenite grain boundary by a cubic shaped TiN particle in hot rolled HSLA steel. Mater Charact, 2012, 73: 31 doi: 10.1016/j.matchar.2012.07.003
    [36]
    Ma W J, Bao Y P, Zhao L H, et al. Control of the precipitation of TiN inclusions in gear steels. Intl J Miner Metall Mater, 2014, 21(3): 234 doi: 10.1007/s12613-014-0900-2
    [37]
    齊建軍, 李紹杰. 鋁氮比對轎車用滲碳鋼晶粒混晶的影響. 河北冶金, 2015(2):1 doi: 10.13630/j.cnki.13-1172.2015.0201

    Qi J J, Li S J. Effect of Al-N ratio on grain blending of carburized steel for cars. Hebei Metall, 2015(2): 1 doi: 10.13630/j.cnki.13-1172.2015.0201
    [38]
    郭海濱, 左秀榮, 張新理, 等. X80M管線鋼奧氏體晶粒粗化及Nb/Ti的固溶析出行為. 熱加工工藝, 2016, 45(10):1 doi: 10.14158/j.cnki.1001-3814.2016.10.001

    Guo H B, Zuo X R, Zhang X L, et al. Austenite grain coarsening and Nb/Ti solution precipitation behavior of X80M pipeline steel. Hot Work Technol, 2016, 45(10): 1 doi: 10.14158/j.cnki.1001-3814.2016.10.001
    [39]
    李堯, 成國光, 魯金龍, 等. 20CrMnTi齒輪鋼中TiN析出相對淬透性的影響. 鋼鐵, 2021, 56(1):75

    Li Y, Cheng G G, Lu J L, et al. Effect of TiN precipitation on hardenability of 20CrMnTi gear steel. Steel, 2021, 56(1): 75
    [40]
    雍岐龍. 鋼鐵中的第二相. 北京:冶金工業出版社, 2006

    Yong Q L. The Second Phase in Steel Materials. Beijing: Metallurgical Industry Press, 2006
    [41]
    黃英, 張珉. 不同因素對C?Mn鋼晶粒長大趨勢的影響//中國金屬學會軋鋼學會鋼管學術委員會五屆三次年會. 西安, 2007:391

    Huang Y, Zhang M. Influence of different factors on the grain growth trend of C?Mn steel // The Third Annual Meeting of the Fifth Steel Pipe Academic Committee of the Steel Rolling Society of the Chinese Society of Metals. Xi’an, 2007: 391
    [42]
    崔忠坼. 金屬學與熱處理. 北京:機械工業出版社, 2000

    Cui Z H. Metallography and Heat Treatment. Beijing: China Machine Press, 2000
    [43]
    張朝磊, 邵洙浩, 李戩, 等. 鈮微合金化技術在中高碳鋼中的應用現狀與發展. 材料導報, 2021, 35(5):5102 doi: 10.11896/cldb.20010139

    Zhang C L, Shao Z H, Li J, et al. Application and development of niobium microalloying technology in medium and high carbon steel. Mater Rep, 2021, 35 (5): 5102 doi: 10.11896/cldb.20010139
    [44]
    董企銘, 李炎, 江錫堂, 等. 20Cr2Ni4A鋼混晶機理的初步研究. 洛陽工學院學報, 1987(2):1

    Dong Q M, Li Y, Jiang X T, et al. A preliminary study on the mixed crystal mechanism of 20Cr2Ni4A steel. J Luoyang Inst Technol, 1987(2): 1
    [45]
    李文卿, 張小紅, 高寧, 等. 鋁、鈦、釩和鈮對中碳鋼奧氏體晶粒度的影響. 北京科技大學學報, 1990, 12(5):437

    Li W Q, Zhang X H, Gao N, et al. The effect of Al, Ti, V and Nb on austenite grain size of medium carbon steels. J Univ Scie Technol Beijing, 1990, 12(5): 437
    [46]
    Kubota M, Ochi T. Development of anti-coarsening steel for carburizing. Mater Sci Forum, 2007, 539: 4855
    [47]
    孫后金, 張永安, 張三平. 22CrMoH齒輪鋼奧氏體晶粒度影響因素及混晶原因分析. 山東冶金, 2019, 41(6):29 doi: 10.16727/j.cnki.issn1004-4620.2019.06.011

    Sun H J, Zhang Y A, Zhang S P. Analysis of influencing factors on austenite grain size of 22CrMoH gear steel and reasons for mixed grain. Shandong Metallurgy, 2019, 41(6): 29 doi: 10.16727/j.cnki.issn1004-4620.2019.06.011
    [48]
    劉華松, 董延楠, 鄭宏光, 等. Nb微合金化對齒輪鋼高溫滲碳奧氏體晶粒度的影響. 鋼鐵研究學報, 2021, 33(8):828

    Liu H S, Dong Y N, Zheng H G, et al. Effect of Nb microalloying on austenite grain size of high temperature carburized gear steel. J Iron Steel Res, 2021, 33(8): 828
    [49]
    李潤霞, 喻書贏, 王宇. 汽車齒輪用滲碳鋼20MnCr5晶粒度的影響因素. 金屬世界, 2022(4):72

    Li R X, Yu S Y, Wang Y. Factors of grain size for automobile gear steel 20MnCr5. Met World, 2022(4): 72
    [50]
    Bepari M A. Effects of second-phase particles on coarsening of austenite in 0.15 Pct carbon steels. Metall Trans A, 1989, 20(1): 13
    [51]
    Liu Z Y, Bao Y P, Wang M, et al. Austenite grain growth of medium-carbon alloy steel with aluminum additions during heating process. Int J Miner Metall Mater, 2019, 26(3): 282 doi: 10.1007/s12613-019-1736-6
    [52]
    Sun L Y, Liu X, Xu X, et al. Review on niobium application in microalloyed steel. J Iron Steel Res Int, 2022, 29(10): 1513 doi: 10.1007/s42243-022-00789-1
    [53]
    Yu Q B, Sun Y. Abnormal growth of austenite grain of low-carbon steel. Mater Sci Eng A, 2006, 420(1-2): 34 doi: 10.1016/j.msea.2006.01.027
    [54]
    程四華, 周德, 孔祥濤, 等. Nb微合金化對高碳鋼奧氏體晶粒生長的影響. 金屬熱處理, 2014, 39(5):54 doi: 10.13251/j.issn.0254-6051.2014.05.014

    Cheng S H, Zhou D, Kong X T, et al. Effect of Nb microalloying on austenite grain growth of high carbon steel. Heat Treat Met, 2014, 39(5): 54 doi: 10.13251/j.issn.0254-6051.2014.05.014
    [55]
    Gray J M, Yeo R B G. Niobium carbonitride precipitation in low-alloy steels with particular emphasis on precipitate-row formation. ASM-Trans, 1968, 61(2): 255
    [56]
    肖榮亭, 于浩, 周平. Q1030焊接高強鋼的奧氏體晶粒異常長大機理. 北京科技大學學報, 2011, 33(12):1458 doi: 10.13374/j.issn1001-053x.2011.12.006

    Xiao R T, Yu H, Zhou P. Abnormal grain growth mechanism of austenite in high-strength welded steel Q103. J Univ Sci Technol Beijing, 2011, 33(12): 1458 doi: 10.13374/j.issn1001-053x.2011.12.006
    [57]
    張國強, 何肖飛, 尉文超, 等. 高溫滲碳齒輪鋼的晶粒粗化行為. 鋼鐵, 2019, 54(5):68 doi: 10.13228/j.boyuan.issn0449-749x.20180369

    Zhang G Q, He X F, Wei W C, et al. Grain coarsening behavior of high temperature carburized gear steel. Steel, 2019, 54(5): 68 doi: 10.13228/j.boyuan.issn0449-749x.20180369
    [58]
    Ma F J, Wen G H, Wang W L. Effect of cooling rates on the second-phase precipitation and proeutectoid phase transformation of a Nb-Ti microalloyed steel slab. Steel Res Int, 2013, 84(4): 370 doi: 10.1002/srin.201200161
    [59]
    劉清友, 董瀚, 孫新軍, 等. CSP工藝中含Nb鋼的混晶問題及改善方法. 鋼鐵, 2003(8):16 doi: 10.3321/j.issn:0449-749X.2003.08.003

    Liu Q Y, Dong H, Sun X J, et al. Mixed grain problem of Nb containing steel in CSP process and its improvement method. Steel, 2003(8): 16 doi: 10.3321/j.issn:0449-749X.2003.08.003
    [60]
    Yuan X Q, Liu Z Y, Jiao S H, et al. The onset temperatures of γ to α-phase transformation in hot deformed and non-deformed Nb micro-alloyed steels. ISIJ Int, 2006, 46(4): 579 doi: 10.2355/isijinternational.46.579
    [61]
    劉燕, 王毛球, 樊剛, 等. 含鈮齒輪鋼的晶粒長大動力學. 鋼鐵研究學報, 2008(11):37 doi: 10.13228/j.boyuan.issn1001-0963.2008.11.010

    Liu Y, Wang M Q, Fan G, et al. Grain growth kinetics of niobium bearing gear steel. J Iron Steel Res, 2008(11): 37 doi: 10.13228/j.boyuan.issn1001-0963.2008.11.010
    [62]
    馬莉, 王毛球, 徐香秋, 等. 鈮硼微合金化齒輪鋼的晶粒尺寸及淬透性. 材料熱處理學報, 2009, 30(5):74 doi: 10.13289/j.issn.1009-6264.2009.05.034

    Ma L, Wang M Q, Xu X Q, et al. Austenite grain size and hardenability of Nb-B microalloyed gear steels. Trans Mater Heat Treat, 2009, 30(5): 74 doi: 10.13289/j.issn.1009-6264.2009.05.034
    [63]
    佟倩, 崔京玉, 柳洋波, 等. Nb含量對20CrMnTiH鋼奧氏體晶粒長大行為的影響. 金屬熱處理, 2014, 39(7):39 doi: 10.13251/j.issn.0254-6051.2014.07.009

    Tong Q, Cui J Y, Liu Y B, et al. Effect of Nb content on austenite grain growth behavior of 20CrMnTiH steel. Heat Treat Met, 2014, 39(7): 39 doi: 10.13251/j.issn.0254-6051.2014.07.009
    [64]
    賈羽, 方光錦, 史文輝, 等. 20MnCr5?Nb鋼的晶粒粗化行為分析與研究. 甘肅冶金, 2020, 42(5):45 doi: 10.3969/j.issn.1672-4461.2020.05.013

    Jia Y, Fang G J, Shi W H, et al. Analysis and study on grain coarsening behavior of 20MnCr5?Nb steel. Gansu Metallurgy, 2020, 42(5): 45 doi: 10.3969/j.issn.1672-4461.2020.05.013
    [65]
    顧鐵. 滲碳齒輪鋼AlN固溶行為的研究. 工程技術研究, 2021, 3(9):161 doi: 10.3969/j.issn.1671-3818.2021.09.077

    Gu Tie. Research on AlN solution behavior of carburized gear steel. Eng Technol Res, 2021, 3(9): 161 doi: 10.3969/j.issn.1671-3818.2021.09.077
    [66]
    張永青, 楊雄, 魯麗燕, 等. Nb微合金化HRB400鋼筋加熱溫度的研究//2007中國鋼鐵年會論文集. 成都, 2007:832

    Zhang Y Q, Yang X, Lu L Y, et al. Research on heating temperature of Nb microalloyed HRB400 steel bars // Proceedings of 2007 China Iron and Steel Annual Conference. Chengdu, 2007: 832
    [67]
    楊延輝, 王毛球, 陳敬超, 等. 高溫滲碳齒輪鋼的研究進展. 特殊鋼, 2013, 34(1):22 doi: 10.3969/j.issn.1003-8620.2013.01.006

    Yang Y H, Wang M Q, Chen J C, et al. Research progress of high temperature carburized gear steel. Spec Steel, 2013, 34(1): 22 doi: 10.3969/j.issn.1003-8620.2013.01.006
    [68]
    Huang K, Logé R E. Zener Pinning. Elsevier, 2016
    [69]
    黃健. 齒輪鋼滲碳熱處理過程中的晶粒異常長大現象研究[學位論文]. 沈陽:東北大學, 2020

    Huang J. Investigation on Abnormal Grain Growth Phenomenon During Carburizing Heat Treatment of Gear Steel [Dissertation]. Shenyang: Dongbei University, 2010
    [70]
    W?rner Dr Fia C H, Hazzledine P M. Grain growth stagnation by inclusions or pores. JOM, 1992, 44(9): 16 doi: 10.1007/BF03222320
    [71]
    王秉新, 劉相華, 王國棟, 等. 齒輪鋼20CrMoNb奧氏體晶粒尺寸及相變行為. 材料科學與工藝, 2009, 17(5):620

    Wang B X, Liu X H, Wang G D, et al. Austenite grain size and continuous cooling transformation behavior in gear steel 20CrMoNb gear steel. Mater Sci Technol, 2009, 17(5): 620
    [72]
    Maalekian M, Radis R, Militzer M, et al. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyed steel. Acta Mater, 2012, 60(3): 1015 doi: 10.1016/j.actamat.2011.11.016
    [73]
    Zhang X G, Matsuura K, Ohno M. Abnormal grain growth in austenite structure reversely transformed from ferrite/pearlite-banded structure. Metall Mater Trans A, 2014, 45(10): 4623 doi: 10.1007/s11661-014-2364-4
    [74]
    Gu Y, Tian P, Wang X, et al. Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process. Mater Des, 2016, 89: 589 doi: 10.1016/j.matdes.2015.09.039
    [75]
    Jiang B, Wu M, Sun H, et al. Prediction model of austenite growth and the role of MnS inclusions in non-quenched and tempered steel. Met Mater Int, 2018, 24(1): 15 doi: 10.1007/s12540-017-7012-2
    [76]
    Liu H S, Dong Y N, Zheng H G, et al. Precipitation criterion for inhibiting austenite grain coarsening during carburization of Al-containing 20Cr gear steels. Metals, 2021, 11(3): 504 doi: 10.3390/met11030504
    [77]
    羅瀚宇, 曹建春, 曾敏, 等. Zr對Ti微合金化低碳鋼形變奧氏體再結晶和析出相的影響. 材料研究學報, 2022, 36(2):123

    Luo H Y, Cao J C, Zeng M, et al. Effect of Zr on deformed austenite recrystallization and precipitates in austenite in Ti-microalloyed low carbon steel. Chin J Mater Res, 2022, 36(2): 123
    [78]
    楊林, 邵亮, 喬兵, 等. 含Nb齒輪鋼晶粒度研究. 汽車工藝與材料, 2004, (7):5 doi: 10.3969/j.issn.1003-8817.2004.07.002

    Yang L, Shao L, Qiao B, et al. The study on grain size of Nb gear steel. Automob Technol Mater, 2004(7): 5 doi: 10.3969/j.issn.1003-8817.2004.07.002
    [79]
    柳洋波, 崔京玉, 佟倩, 等. 鈮對20CrMnTi鋼滲碳過程中晶粒粗化行為的影響. 材料熱處理學報, 2015, 36(1):124 doi: 10.13289/j.issn.1009-6264.2015.01.025

    Liu Y B, Cui J Y, Tong Q, et al. Effect of Nb on grain coarsening behavior of 20CrMnTi steel during carburizing. Trans Mater Heat Treat, 2015, 36(1): 124 doi: 10.13289/j.issn.1009-6264.2015.01.025
    [80]
    Dong D Q, Chen F, Cui Z S. Modeling of austenite grain growth during austenitization in a low alloy steel. J of Materi Eng and Perform, 2016, 25(1): 152 doi: 10.1007/s11665-015-1810-9
    [81]
    Zhang L C, Wen X L, Liu Y Z. Effect of precipitates on austenite grain growth behavior in a low-carbon Nb–V microalloyed steel. Mater Sci Forum, 2017, 898: 783 doi: 10.4028/www.scientific.net/MSF.898.783
    [82]
    申群芳, 吳少斌. 20CrMnTi“混晶”分析. 現代機械, 2011(3):90 doi: 10.3969/j.issn.1002-6886.2011.03.032

    Shen Q F, Wu S B. “Mixed crystal” analysis of 20CrMnTi. Mod Mach, 2011(3): 90 doi: 10.3969/j.issn.1002-6886.2011.03.032
    [83]
    高元安, 葉健熠, 王智勇, 等. Cr4Mo4V鋼球淬火產生混晶組織的原因與消除措施. 軸承, 2013(10):40 doi: 10.3969/j.issn.1000-3762.2013.10.014

    Gao Y A, Ye J Y, Wang Z Y, et al. The reason and elimination of mixed crystal structure in Cr4Mo4V steel ball quenching. Bearing, 2013(10): 40 doi: 10.3969/j.issn.1000-3762.2013.10.014
    [84]
    宋海剛. F91鋼的混晶原因以及消除方法. 中國金屬通報, 2017(8):71

    Song H G. Causes and elimination methods of mixed crystal of F91 steel. China Mel Bull, 2017(8): 71
    [85]
    劉秀蓮, 班君, 羅燕, 等. 消除8Cr4Mo4V鋼“混晶”試驗研究. 熱加工工藝, 2018, 47(14):165 doi: 10.14158/j.cnki.1001-3814.2018.14.043

    Liu X L, Ban J, Luo Y, et al. Experimental study on eliminating "mixed crystal" of 8Cr4Mo4V steel. Hot Working Process, 2018, 47(14): 165 doi: 10.14158/j.cnki.1001-3814.2018.14.043
    [86]
    冶廷全, 楊國, 馬恒春, 等. 熱處理工藝對16MnCrS5+H鋼奧氏體晶粒度的影響. 甘肅冶金, 2020, 42(5):59 doi: 10.3969/j.issn.1672-4461.2020.05.016

    Ye T Q, Yang G, Ma H C, et al. Effect of heat treatment process on austenite grain size of 16MnCrS5+H steel. Gansu Metallurgy, 2020, 42(5): 59 doi: 10.3969/j.issn.1672-4461.2020.05.016
    [87]
    黃道龍, 吳翔云, 侯清宇, 等. 加熱工藝對16MnCr5H鋼奧氏體晶粒度的影響. 熱處理, 2022, 37(2):46 doi: 10.3969/j.issn.1008-1690.2022.02.011

    Huang D L, Wu X Y, Hou Q Y, et al. Effect of heating process on austenite grain size of 16MnCr5H steel. Heat Treat, 2022, 37(2): 46 doi: 10.3969/j.issn.1008-1690.2022.02.011
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(24)  / Tables(12)

    Article views (245) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频