Citation: | MIAO Haibin, XIANG Chaojian, LIU Shengnan, HUANG Dongnan, LOU Huafen. Application of expert-augmented machine learning modeling in high-strength and high-conductivity copper alloy development[J]. Chinese Journal of Engineering, 2023, 45(11): 1908-1917. doi: 10.13374/j.issn2095-9389.2022.09.19.002 |
[1] |
謝建新, 宿彥京, 薛德禎, 等. 機器學習在材料研發中的應用. 金屬學報, 2021, 57(11):1343
Xie J X, Su Y J, Xue D Z, et al. Machine learning for materials research and development. Acta Metall Sin, 2021, 57(11): 1343
|
[2] |
Agrawal A, Choudhary A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Mater, 2016, 4(5): 053208 doi: 10.1063/1.4946894
|
[3] |
Liu Y L, Niu C, Wang Z, et al. Machine learning in materials genome initiative: A review. J Mater Sci Technol, 2020, 57: 113 doi: 10.1016/j.jmst.2020.01.067
|
[4] |
Hart G L W, Mueller T, Toher C, et al. Machine learning for alloys. Nat Rev Mater, 2021, 6(8): 730 doi: 10.1038/s41578-021-00340-w
|
[5] |
Chen C, Zuo Y X, Ye W K, et al. A critical review of machine learning of energy materials. Adv Energy Mater, 2020, 10(8): 1903242 doi: 10.1002/aenm.201903242
|
[6] |
Raccuglia P, Elbert K C, Adler P D F, et al. Machine-learning-assisted materials discovery using failed experiments. Nature, 2016, 533(7601): 73 doi: 10.1038/nature17439
|
[7] |
Janet J P, Chan L, Kulik H J. Accelerating chemical discovery with machine learning: Simulated evolution of spin crossover complexes with an artificial neural network. J Phys Chem Lett, 2018, 9(5): 1064 doi: 10.1021/acs.jpclett.8b00170
|
[8] |
Torkamannia A, Omidi Y, Ferdousi R. A review of machine learning approaches for drug synergy prediction in cancer. Brief Bioinform, 2022, 23(3): bbac075 doi: 10.1093/bib/bbac075
|
[9] |
鄭偉達, 張惠然, 胡紅青, 等. 基于不同機器學習算法的鈣鈦礦材料性能預測. 中國有色金屬學報, 2019, 29(4):803
Zheng W D, Zhang H R, Hu H Q, et al. Performance prediction of perovskite materials based on different machine learning algorithms. Chin J Nonferrous Met, 2019, 29(4): 803
|
[10] |
Balachandran P V, Emery A A, Gubernatis J E, et al. Predictions of new ABO3 perovskite compounds by combining machine learning and density functional theory. Phys Rev Materials, 2018, 2(4): 043802 doi: 10.1103/PhysRevMaterials.2.043802
|
[11] |
She C L, Huang Q C, Chen C, et al. Machine learning-guided search for high-efficiency perovskite solar cells with doped electron transport layers. J Mater Chem A, 2021, 9(44): 25168 doi: 10.1039/D1TA08194B
|
[12] |
Sun Y T, Bai H Y, Li M Z, et al. Machine learning approach for prediction and understanding of glass-forming ability. J Phys Chem Lett, 2017, 8(14): 3434 doi: 10.1021/acs.jpclett.7b01046
|
[13] |
Xiong J E, Zhang T Y, Shi S Q. Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Commun, 2019, 9(2): 576 doi: 10.1557/mrc.2019.44
|
[14] |
徐燕, 張玉鳳, 高湉, 等. Al基非晶合金表征參數的支持向量回歸分析. 中國有色金屬學報, 2016, 26(4):836
Xu Y, Zhang Y F, Gao T, et al. Parameters analysis of Al-based amorphous alloys using support vector regression. Chin J Nonferrous Met, 2016, 26(4): 836
|
[15] |
王炯, 肖斌, 劉軼. 機器學習輔助的高通量實驗加速硬質高熵合金CoxCryTizMouWv成分設計. 中國材料進展, 2020, 39(4):269
Wang J, Xiao B, Liu Y. Machine learning assisted high-throughput experiments accelerates the composition design of hard high-entropy alloy CoxCryTizMouWv. Mater China, 2020, 39(4): 269
|
[16] |
Rao Z Y, Tung P Y, Xie R W, et al. Machine learning-enabled high-entropy alloy discovery. Science, 2022, 378(6615): 78 doi: 10.1126/science.abo4940
|
[17] |
Klimenko D, Stepanov N, Li J A, et al. Machine learning-based strength prediction for refractory high-entropy alloys of the Al–Cr–Nb–Ti–V–Zr system. Materials, 2021, 14(23): 7213 doi: 10.3390/ma14237213
|
[18] |
Wang C S, Fu H D, Jiang L, et al. A property-oriented design strategy for high performance copper alloys via machine learning. NPJ Comput Mater, 2019, 5: 87 doi: 10.1038/s41524-019-0227-7
|
[19] |
Zhang H T, Fu H D, He X Q, et al. Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening. Acta Mater, 2020, 200: 803 doi: 10.1016/j.actamat.2020.09.068
|
[20] |
Wu S W, Zhou X G, Ren J K, et al. Optimal design of hot rolling process for C–Mn steel by combining industrial data-driven model and multi-objective optimization algorithm. J Iron Steel Res Int, 2018, 25(7): 700 doi: 10.1007/s42243-018-0101-8
|
[21] |
邱華東, 田建艷, 王書宇, 等. 模糊神經網絡融合建模方法及其在軋制力控制中的應用. 中國冶金, 2021, 31(1):52
Qiu H D, Tian J Y, Wang S Y, et al. Modeling method of fuzzy neural network and its application in rolling force control. China Metall, 2021, 31(1): 52
|
[22] |
Asif K, Zhang L, Derrible S, et al. Machine learning model to predict welding quality using air-coupled acoustic emission and weld inputs. J Intell Manuf, 2022, 33(3): 881 doi: 10.1007/s10845-020-01667-x
|
[23] |
Hart-Rawung T, Buhl J, Bambach M. A fast approach for optimization of hot stamping based on machine learning of phase transformation kinetics. Procedia Manuf, 2020, 47: 707 doi: 10.1016/j.promfg.2020.04.218
|
[24] |
宿彥京, 付華棟, 白洋, 等. 中國材料基因工程研究進展. 金屬學報, 2020, 56(10):1313
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China. Acta Metall Sin, 2020, 56(10): 1313
|
[25] |
Raissi M. Deep hidden physics models: Deep learning of nonlinear partial differential equations. J Mach Learn Res, 2018, 19: 1
|
[26] |
Sun L N, Gao H, Pan S W, et al. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput Methods Appl Mech Eng, 2020, 361: 112732 doi: 10.1016/j.cma.2019.112732
|
[27] |
Sang L, Xu M, Qian S S, et al. Knowledge graph enhanced neural collaborative filtering with residual recurrent network. Neurocomputing, 2021, 454: 417 doi: 10.1016/j.neucom.2021.03.053
|
[28] |
Chai X Q. Diagnosis method of thyroid disease combining knowledge graph and deep learning. IEEE Access, 2020, 8: 149787 doi: 10.1109/ACCESS.2020.3016676
|
[29] |
Heaton J. The number of hidden layers [R/OL]. Heaton Research (2017-06-01) [2022-09-19]. https://www.heatonresearch.com/2017/06/01/hidden-layers.html
|