<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
ZHOU Yi, YUE Qingrui, PAN Danguang, LAN Chengming. Analytical formulas for prismatic continuous beams of equal spans[J]. Chinese Journal of Engineering, 2023, 45(11): 1970-1976. doi: 10.13374/j.issn2095-9389.2022.08.31.002
Citation: ZHOU Yi, YUE Qingrui, PAN Danguang, LAN Chengming. Analytical formulas for prismatic continuous beams of equal spans[J]. Chinese Journal of Engineering, 2023, 45(11): 1970-1976. doi: 10.13374/j.issn2095-9389.2022.08.31.002

Analytical formulas for prismatic continuous beams of equal spans

doi: 10.13374/j.issn2095-9389.2022.08.31.002
More Information
  • Corresponding author: E-mail: zhouyi@ustb.edu.cn
  • Received Date: 2022-08-31
    Available Online: 2023-08-02
  • Publish Date: 2023-11-01
  • Solving the deformation and internal force of a prismatic multispan continuous beam of equal spans is a fundamental and classic problem in the area of civil engineering. Based on the Euler–Bernoulli beam theory, this paper presents unified analytical formulas to calculate the member-end rotation and bending moment of prismatic continuous beams of equal spans. First, simple closed-form expressions to determine the beam-end rotational stiffness of an equal-span prismatic continuous beam comprising any number of spans are derived using the displacement method in structural mechanics and the auxiliary series in mathematics. Furthermore, the rotational stiffness formulas are used to derive the analytical formulas for determining the joint rotation and bending moment at the supports of continuous beams subjected to various types of static loads and actions, such as a single point load applied at mid-span, distributed load applied over the span length, and differential temperature change between the top and bottom surfaces of the beam. Moreover, the implications of the proposed formulas on some interesting academic problems are thoroughly discussed. It is observed that as the number of spans goes infinity, the beam-end rotational stiffness of an equal-span prismatic continuous beam approaches the upper limit of $ 2\sqrt{\text{3}} $ i0, where i0 denotes the linear stiffness, which is the product of the modulus of elasticity (E) and the moment of inertia (I) divided by the length (l0) of the member of single-span beams. For equal-span prismatic continuous beams with various spans, the analytical formulas of the joint rotation and bending moment at the supports have unified expressions, while the difference between formulas for different static loads and actions is solely dependent on the fixed-end bending moment of single-span beams. This set of formulas reveals the advantages of concise form, general applicability, and convenient calculation. They can reveal the influence of the number of spans on the mechanical characteristics of continuous beams and analyze real-world engineering problems, such as optimization of the launching noses for incrementally launched bridges. Additionally, the proposed formulas in this paper can serve as an important reference for course teaching in the area of structural mechanics.

     

  • loading
  • [1]
    徐岳, 申成岳, 邵國濤, 等. 連續梁橋. 3版. 北京:人民交通出版社, 2022

    Xu Y, Shen C Y, Shao G T, et al. Continuous Beam Bridges. 3rd Ed. Beijing: China Communications Press, 2022
    [2]
    邵旭東. 橋梁工程. 5版. 北京:人民交通出版社, 2019

    Shao X D. Bridge Engineering. 5th Ed. Beijing: China Communications Press, 2019
    [3]
    張懷靜, 潘旦光. 變截面連續梁動力特性的半解析解法. 北京科技大學學報, 2008, 30(6):590 doi: 10.13374/j.issn1001-053x.2008.06.019

    Zhang H J, Pan D G. Semi-analytic solution to dynamic characteristics of non-uniform continuous beams. J Univ Sci Technol Beijing, 2008, 30(6): 590 doi: 10.13374/j.issn1001-053x.2008.06.019
    [4]
    李廉錕. 結構力學(上冊). 6版. 北京:高等教育出版社, 2017

    Li L K. Structural Mechanics (I). 6th Ed. Beijing: Higher Education Press, 2017
    [5]
    龍馭球, 包世華, 袁駟. 結構力學I——基礎教程. 4版. 北京:高等教育出版社, 2018

    Long Y Q, Bao S H, Yuan S. Structural Mechanics (I) Basic Course. 4th Ed. Beijing: Higher Education Press, 2018
    [6]
    Hibbeler R C. Structural Analysis. 9th Ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2015
    [7]
    Leet K M, Uang C, Lanning J T, et al. Fundamentals of Structural Analysis. 5th Ed. New York: McGraw-Hill Education, 2018
    [8]
    Zuraski P D. Continuous-beam analysis for highway bridges. J Struct Eng, 1 991, 117(1): 80
    [9]
    建筑結構靜力計算手冊編寫組. 建筑結構靜力計算手冊. 2版. 北京:中國建筑工業出版社, 1998

    Compiling Group for “Manual of Static Calculation of Building Structures”. Manual of Static Calculation of Building Structures. 2nd Ed. Beijing: China Architecture & Building Press, 1998
    [10]
    李瀛滄. 任意多跨連續梁的計算. 橋梁建設, 1990, 20(4):23

    Li Y C. Calculation of continuous beams with any number of spans. Bridge Constr, 1990, 20(4): 23
    [11]
    Dowell R K. Closed-form moment solution for continuous beams and bridge structures. Eng Struct, 2009, 31(8): 1880 doi: 10.1016/j.engstruct.2009.03.012
    [12]
    Dowell R K, Johnson T P. Shear and bending flexibility in closed-form moment solutions for continuous beams and bridge structures. Eng Struct, 2011, 33(12): 3238 doi: 10.1016/j.engstruct.2011.08.016
    [13]
    Hosseini-Tabatabaei M R, Rezaiee-Pajand M, Mollaeinia M R. Bridge-type structures analysis using RMP concept considering shear and bending flexibility. Struct Eng Mech, 2020, 74(2): 189
    [14]
    Hosseini-Tabatabaei M R, Mollaeinia M R. Exact closed-form equations for internal forces functions of bridge-type structures. Struct Eng Mech, 2021, 80(2): 211
    [15]
    Rosignoli M. Bridge Launching. London: Thomas Telford, 2002
    [16]
    周季湘. 等截面連續梁橋頂推施工的受力分析. 公路, 1994(11):20

    Zhou J X. Mechanical analysis for incrementally launched prismatic continuous beam bridges. Highway, 1994(11): 20
    [17]
    董創文, 李傳習. 連續梁頂推導梁合理參數的確定方法. 公路交通科技, 2010, 27(9):55 doi: 10.3969/j.issn.1002-0268.2010.09.010

    Dong C W, Li C X. Method for determination of reasonable parameters of launching nose for continuous beam. J Highw Transp Res Dev, 2010, 27(9): 55 doi: 10.3969/j.issn.1002-0268.2010.09.010
    [18]
    Rosignoli M. Nose-deck interaction in launched prestressed concrete bridges. J Bridge Eng, 1998, 3(1): 21 doi: 10.1061/(ASCE)1084-0702(1998)3:1(21)
    [19]
    王衛鋒, 林俊鋒, 馬文田. 橋梁頂推施工導梁的優化分析. 工程力學, 2007, 24(2):132 doi: 10.3969/j.issn.1000-4750.2007.02.023

    Wang W F, Lin J F, Ma W T. Optimum analysis of launching nose during incremental launching construction of bridge. Eng Mech, 2007, 24(2): 132 doi: 10.3969/j.issn.1000-4750.2007.02.023
    [20]
    Ji W, Shao T Y, Yu H F. Optimizing double launching noses for incrementally launched equal-span continuous girder bridges. J Bridge Eng, 2021, 26(7): 06021006 doi: 10.1061/(ASCE)BE.1943-5592.0001746
    [21]
    Lee H W, Jang J Y. Simplified analysis formula for the interaction of the launching nose and the superstructure of ILM bridge. J Comput Struct Eng Inst Korea, 2012, 25(3): 245 doi: 10.7734/COSEIK.2012.25.3.245
    [22]
    王磊. 梁、連續梁、剛架靜力及影響線的新解法. 湖南大學學報, 1983, 10(2):58

    Wang L. A new method for solving static problems and influence lines of beams, continuous beams and rigid frames. J Hunan Univ, 1983, 10(2): 58
    [23]
    孫仙山, 張方春. “直寫法”求解靜不定連續梁. 山東工業大學學報, 1999, 29(2):197

    Sun X S, Zhang F C. Solving statically indeterminate continuous beams by “directly writing method”. J Shandong Univ Tech, 1999, 29(2): 197
    [24]
    喻曉今. 求超靜定等直梁的置換法. 工程力學, 2007, 24(增刊1):66 doi: 10.3969/j.issn.1000-4750.2007.z1.008

    Yu X J. Conversion method for calculation of statically indeterminate straight beams with uniform cross-section. Eng Mech, 2007, 24(S1): 66 doi: 10.3969/j.issn.1000-4750.2007.z1.008
    [25]
    吳艷艷, 李銀山, 魏劍偉, 等. 求解超靜定梁的分段獨立一體化積分法. 工程力學, 2013, 30(S1):11 doi: 10.6052/j.issn.1000-4750.2012.04.S006

    Wu Y Y, Li Y S, Wei J W, et al. A subsection independently systematic integral method for solving problems of statically indeterminate beam. Eng Mech, 2013, 30(S1): 11 doi: 10.6052/j.issn.1000-4750.2012.04.S006
    [26]
    蔣純志, 黃健全, 唐政華. 多跨超靜定梁的分布傳遞函數方法. 湘南學院學報, 2018, 39(2):29 doi: 10.3969/j.issn.1672-8173.2018.02.006

    Jiang C Z, Huang J Q, Tang Z H. Distributed transfer function method for multi span statically indeterminate beam. J Xiangnan Univ, 2018, 39(2): 29 doi: 10.3969/j.issn.1672-8173.2018.02.006
    [27]
    王亞軍, 狄謹. 等截面連續梁合理邊中跨跨徑比. 蘭州大學學報(自然科學版), 2016, 52(3):320

    Wang Y J, Di J. A reasonable length ratio between side span and mid-span of continuous beams with uniform section. J Lanzhou Univ Nat Sci, 2016, 52(3): 320
    [28]
    冀偉, 邵天彥. 多跨連續梁橋頂推施工雙導梁的優化分析. 浙江大學學報(工學版), 2021, 55(7):1289

    Ji W, Shao T Y. Optimization analysis of double launching noses during launching construction of multi-span continuous girder bridge. J Zhejiang Univ Eng Sci, 2021, 55(7): 1289
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article views (130) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频