<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 10
Sep.  2022
Turn off MathJax
Article Contents
LIU Min, MAO Jing-wen, JIANG Zong-sheng, ZHAO Pan-lao. Feasibility analysis of co-mining of mineral and geothermal resources in the Jiaodong Peninsula[J]. Chinese Journal of Engineering, 2022, 44(10): 1652-1659. doi: 10.13374/j.issn2095-9389.2022.07.12.002
Citation: LIU Min, MAO Jing-wen, JIANG Zong-sheng, ZHAO Pan-lao. Feasibility analysis of co-mining of mineral and geothermal resources in the Jiaodong Peninsula[J]. Chinese Journal of Engineering, 2022, 44(10): 1652-1659. doi: 10.13374/j.issn2095-9389.2022.07.12.002

Feasibility analysis of co-mining of mineral and geothermal resources in the Jiaodong Peninsula

doi: 10.13374/j.issn2095-9389.2022.07.12.002
More Information
  • Corresponding author: E-mail: liuminhello@163.com
  • Received Date: 2022-07-12
    Available Online: 2022-08-17
  • Publish Date: 2022-10-25
  • Geothermal resources are renewable new energy sources. They have the characteristics of large reserves, wide distribution, good stability, and recyclability and are clean and environmentally friendly. Using geothermal energy represents a new direction for China’s sustainable development through achieving green, clean, low-carbon, and sustainable energy. After more than forty years of development, China’s geothermal industry, including power generation and heating, has made remarkable achievements and played an essential role in helping defend the blue sky and achieve carbon peaking and carbon neutrality goals. Metal mines, especially those with large mining depths, often contain plenty of geothermal resources. These deep mines often have a large amount of high-temperature rock mass or geothermal water. These resources have great mining and utilization values. However, during the mining process of mineral resources, especially in the process of deep development of underground mines, the mine temperature is too high due to factors such as geothermal gradients. The high temperature has become an important factor restricting mine production. To maintain daily production, mines often adopt enhanced ventilation or artificial cooling. How to turn geothermal energy into a usable resource in the process of mine development and achieve a win-win situation in resource development and utilization is a difficult problem worth exploring. The Jiaodong Peninsula is located on the continental margin where the Pacific plate subducts beneath the Eurasian plate. The Jiaodong Peninsula is the largest gold production area in China. Because of the preferable geodynamic setting, the Jiaodong Peninsula is also one of the regions with the most abundant geothermal resources in eastern China. The geothermal and mineral resources in the Jiaodong Peninsula share similar geodynamic settings. Therefore, the spatial distribution of geothermal and mineral resources is highly overlapping. Many large metal mines have large reserves of mineral resources and abundant geothermal resources. However, geothermal resources are often considered detrimental to underground mining activities. This paper analyzed the spatial distribution of geothermal and mineral resources in the Jiaodong Peninsula and summarized the current low-temperature geothermal resource utilization in China. The burial depth and mining of gold resources in the Jiaodong Peninsula are relatively large. Accordingly, it is recommended to use mature low-temperature geothermal heating technology to control the heat damage of mines and realize the co-mining of mineral and geothermal resources at gold mines such as the Sanshandao, Jinqingding, Xincheng, and Linglong gold deposits.

     

  • loading
  • [1]
    王貴玲, 楊軒, 馬凌, 等. 地熱能供熱技術的應用現狀及發展趨勢. 華電技術, 2021, 43(11):15

    Wang G L, Yang X, Ma L, et al. Status quo and prospects of geothermal energy in heat supply. Huadian Technol, 2021, 43(11): 15
    [2]
    蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43

    Cai M F, Dor J, Chen X S, et al. Development strategy for co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43
    [3]
    毛景文, 謝桂青, 郭春麗, 等. 華南地區中生代主要金屬礦床時空分布規律和成礦環境. 高校地質學報, 2008, 14(4):510 doi: 10.3969/j.issn.1006-7493.2008.04.005

    Mao J W, Xie G Q, Guo C L, et al. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geol J China Univ, 2008, 14(4): 510 doi: 10.3969/j.issn.1006-7493.2008.04.005
    [4]
    Mao J W, Ouyang H G, Song S W, et al. Geology and metallogeny of tungsten and tin deposits in China. SEG Spec Publ, 2019, 22: 411
    [5]
    毛景文, 謝桂青, 李曉峰, 等. 華南地區中生代大規模成礦作用與巖石圈多階段伸展. 地學前緣, 2004, 11(1):45 doi: 10.3321/j.issn:1005-2321.2004.01.003

    Mao J W, Xie G Q, Li X F, et al. Mesozoic large scale mineralization and multiple lithospheric extension in South China. Earth Sci Front, 2004, 11(1): 45 doi: 10.3321/j.issn:1005-2321.2004.01.003
    [6]
    楊立強, 鄧軍, 王中亮, 等. 膠東中生代金成礦系統. 巖石學報, 2014, 30(9):2447

    Yang L Q, Deng J, Wang Z L, et al. Mesozoic gold metallogenic system of the Jiaodong gold province, Eastern China. Acta Petrol Sin, 2014, 30(9): 2447
    [7]
    Deng J, Wang Q F, Li G J, et al. Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit, SW China. Ore Geol Rev, 2015, 65: 42 doi: 10.1016/j.oregeorev.2014.08.002
    [8]
    Deng J, Yang L Q, Ge L S, et al. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong ore cluster area. Prog Nat Sci, 2006, 16(8): 777 doi: 10.1080/10020070612330069
    [9]
    Deng J, Wang Q F, Yang L Q, et al. The structure of ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong Province, China. Acta Geol Sin Engl Ed, 2008, 82(4): 769
    [10]
    Deng J, Liu W, Sun Z S, et al. Evidence of mantle-rooted fluids and multi-level circulation ore-forming dynamics: A case study from the Xiadian gold deposit, Shandong province, China. Science in China Series D, 2003, 46(Suppl 1): 123)
    [11]
    宋明春, 李杰, 周建波, 等. 膠東早白堊世高鎂閃長巖類的發現及其構造背景. 巖石學報, 2020, 36(1):279 doi: 10.18654/1000-0569/2020.01.22

    Song M C, Li J, Zhou J B, et al. The discovery and tectonic setting of the Early Cretaceous high-Mg diorites in the Jiaodong Peninsula. Acta Petrol Sin, 2020, 36(1): 279 doi: 10.18654/1000-0569/2020.01.22
    [12]
    王貴玲, 張薇, 梁繼運, 等. 中國地熱資源潛力評價. 地球學報, 2017, 38(4):449 doi: 10.3975/cagsb.2017.04.02

    Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China. Acta Geosci Sin, 2017, 38(4): 449 doi: 10.3975/cagsb.2017.04.02
    [13]
    Mao J W, Liu P, Goldfarb R J, et al. Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension, East Asia. Ore Geol Rev, 2021, 136: 104270 doi: 10.1016/j.oregeorev.2021.104270
    [14]
    史猛, 康鳳新, 張杰, 等. 膠東半島中低溫對流型地熱資源賦存機理及找熱模型. 地質論評, 2019, 65(5):1276 doi: 10.16509/j.georeview.2019.05.016

    Shi M, Kang F X, Zhang J, et al. Occurrence mechanism and geothermal exploration model of low-medium temperature geothermal systems of convective type in Jiaodong Peninsula. Geol Rev, 2019, 65(5): 1276 doi: 10.16509/j.georeview.2019.05.016
    [15]
    史猛, 康鳳新, 張杰, 等. 膠東半島不同構造單元深部熱流分流聚熱模式. 地質學報, 2021, 95(5):1594 doi: 10.3969/j.issn.0001-5717.2021.05.020

    Shi M, Kang F X, Zhang J, et al. Discussion on the deep heat flow diversion-acculturation between uplift and depression in different tectonic units in the Jiaodong Peninsula. Acta Geol Sin, 2021, 95(5): 1594 doi: 10.3969/j.issn.0001-5717.2021.05.020
    [16]
    潘素珍, 王夫運, 鄭彥鵬, 等. 膠東半島地殼速度結構及其構造意義. 地球物理學報, 2015, 58(9):3251 doi: 10.6038/cjg20150920

    Pan S Z, Wang F Y, Zheng Y P, et al. Crustal velocity structure beneath Jiaodong Peninsula and its tectonic implications. Chin J Geophys, 2015, 58(9): 3251 doi: 10.6038/cjg20150920
    [17]
    Jiang G, Tang X, Rao S, et al. High-quality heat flow determination from the crystalline basement of the south-east margin of North China Craton. J Asian Earth Sci, 2016, 118: 1 doi: 10.1016/j.jseaes.2016.01.009
    [18]
    宋明春, 丁正江, 劉向東, 等. 膠東型金礦床斷裂控礦及成礦模式. 地質學報, 2022, 96(5):1774

    Song M C, Ding Z J, Liu X D, et al. Structural controls on the Jiaodong type gold deposits and metallogenic model. Acta Geol Sin, 2022, 96(5): 1774
    [19]
    鄭春波, 張春志, 徐冰, 等. 舊店金礦地熱形成條件分析. 地下水, 2009, 31(5):124 doi: 10.3969/j.issn.1004-1184.2009.05.044

    Zheng C B, Zhang C Z, Xu B, et al. Analysis on formation condition of golden mine terrestrial heat in old store. Ground Water, 2009, 31(5): 124 doi: 10.3969/j.issn.1004-1184.2009.05.044
    [20]
    周福寶, 黃榮廷, 辛海會, 等. 礦井通風熱濕提取與資源化利用方法研究. 工程科學學報.https://doi.org/10.13374/j.issn2095-9389.2022.04.19.001

    Zhou F B, Huang R T, Xin H H, et al. The extraction and resource utilization of heat and humidity in mine ventilation. Chin J Eng,https://doi.org/10.13374/j.issn2095-9389.2022.04.19.001
    [21]
    曹銳, 多吉, 李玉彬, 等. 我國中深層地熱資源賦存特征、發展現狀及展望. 工程科學學報,https://doi.org/ 10.13374/j.issn2095-9389.2022.04.07.003

    Cao R, Dor J, Li Y B, et al. Occurrence characteristics, development status, and prospect of deep hightemperature geothermal resources in China. Chin J Eng,https://doi.org/10.13374/j.issn2095-9389.2022.04.07.003
    [22]
    郭奇峰, 蔡美峰, 吳星輝, 等. 面向2035年的金屬礦深部多場智能開采發展戰略. 工程科學學報, 2022, 44(4):476

    Guo Q F, Cai M F, Wu X H, et al. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035. Chin J Eng, 2022, 44(4): 476
    [23]
    蔡美峰, 馬明輝, 潘繼良, 等. 礦產與地熱資源共采模式研究現狀及展望. 工程科學學報,https://doi.org/10.13374/j.issn2095-9389.2022.08.24.001

    Cai M F, Ma M H, Pan J L et al. Co-mining of mineral and geothermal resources: state-of-the-art review and future perspectives. Chin J Eng,https://doi.org/10.13374/j.issn2095-9389.2022.08.24.001
    [24]
    王貴玲, 劉彥廣, 朱喜, 等. 中國地熱資源現狀及發展趨勢. 地學前緣, 2020, 27(1):1 doi: 10.13745/j.esf.2020.1.1

    Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China. Earth Sci Front, 2020, 27(1): 1 doi: 10.13745/j.esf.2020.1.1
    [25]
    張永亮, 劉耀香, 陳喜山. 膠東半島礦山地熱資源利用方法. 金屬礦山, 2014(4):158

    Zhang Y L, Liu Y X, Chen X S. Utilization methods of geothermal resources in Jiaodong peninsula mines. Met Mine, 2014(4): 158
    [26]
    程力, 吳欽正, 朱明德, 等. 局部制冷降溫技術在三山島金礦深部巷道掘進中的應用. 黃金, 2021, 42(1):37 doi: 10.11792/hj20210107

    Cheng L, Wu Q Z, Zhu M D, et al. Application of local refrigeration and cooling technology in the roadway excavation deep in Sanshandao Gold Mine. Gold, 2021, 42(1): 37 doi: 10.11792/hj20210107
    [27]
    王明斌, 許峰, 周偉. 制冷降溫技術在三山島金礦熱害控制中的應用. 現代礦業, 2021, 37(8):220 doi: 10.3969/j.issn.1674-6082.2021.08.057

    Wang M B, Xu F, Zhou W. Application of refrigeration technology in deep mine heat hazard control. Mod Min, 2021, 37(8): 220 doi: 10.3969/j.issn.1674-6082.2021.08.057
    [28]
    孫樹提, 林麗波. 金青頂金礦床深部成礦規律及找礦前景分析. 黃金科學技術, 2009, 17(4):31 doi: 10.3969/j.issn.1005-2518.2009.04.005

    Sun S T, Lin L B. Analysis on the deep mineralization regularities and prospecting potential of Jinqingding gold deposit. Gold Sci Technol, 2009, 17(4): 31 doi: 10.3969/j.issn.1005-2518.2009.04.005
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(1)

    Article views (342) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频