Citation: | ZHANG Gao-wei, HAN Wen-tuo, LIU Ping-ping, YI Xiao-ou, ZHAN Qian, YANG Shan-wu, WAN Fa-rong. Research progress on high-temperature oxidation resistance of vanadium alloys[J]. Chinese Journal of Engineering, 2022, 44(11): 1868-1880. doi: 10.13374/j.issn2095-9389.2022.05.29.001 |
[1] |
Fasel D, Tran M Q. Availability of lithium in the context of future D-T fusion reactors. Fusion Eng Des, 2005, 75-79: 1163 doi: 10.1016/j.fusengdes.2005.06.345
|
[2] |
Ongena J, Oost G V. Energy for future centuries: Prospects for fusion power as a future energy source. Fusion Sci Technol, 2012, 61(2T): 3 doi: 10.13182/FST12-A13488
|
[3] |
Bradshaw A M, Hamacher T, Fischer U. Is nuclear fusion a sustainable energy form? Fusion Eng Des, 2011, 86(9-11): 2770
|
[4] |
趙君煜. 國際熱核聚變實驗堆(ITER)計劃. 物理, 2004, 33(4):257 doi: 10.3321/j.issn:0379-4148.2004.04.006
Zhao J Y. The international thermonuclear experimental reactor program. Physics, 2004, 33(4): 257 doi: 10.3321/j.issn:0379-4148.2004.04.006
|
[5] |
Aymar R, Barabaschi P, Shimomura Y. The ITER design. Plasma Phys Control Fusion, 2002, 44(5): 519 doi: 10.1088/0741-3335/44/5/304
|
[6] |
李建剛. 托卡馬克研究的現狀及發展. 物理, 2016, 45(2):88 doi: 10.7693/wl20160203
Li J G. The status and progress of tokamak research. Physics, 2016, 45(2): 88 doi: 10.7693/wl20160203
|
[7] |
Bloom E E, Zinkle S J, Wiffen F W. Materials to deliver the promise of fusion power — progress and challenges. J Nucl Mater, 2004, 329-333: 12 doi: 10.1016/j.jnucmat.2004.04.141
|
[8] |
Yvon P, Carré F. Structural materials challenges for advanced reactor systems. J Nucl Mater, 2009, 385(2): 217 doi: 10.1016/j.jnucmat.2008.11.026
|
[9] |
Zinkle S J, Busby J T. Structural materials for fission & fusion energy. Mater Today, 2009, 12(11): 12 doi: 10.1016/S1369-7021(09)70294-9
|
[10] |
Zinkle S J. Challenges in developing materials for fusion technology - past, present and future. Fusion Sci Technol, 2013, 64(2): 65 doi: 10.13182/FST13-631
|
[11] |
Smith D L, Billone M C, Natesan K. Vanadium-base alloys for fusion first-wall/blanket applications. Int J Refract Met Hard Mater, 2000, 18(4-5): 213 doi: 10.1016/S0263-4368(00)00037-8
|
[12] |
Muroga T, Chen J M, Chernov V M, et al. Present status of vanadium alloys for fusion applications. J Nucl Mater, 2014, 455(1-3): 263 doi: 10.1016/j.jnucmat.2014.06.025
|
[13] |
Duquesnes V, Guilbert T, Le Flem M. French investigation of a new V?4Cr?4Ti grade: CEA-J57 — Fabrication and microstructure. J Nucl Mater, 2012, 426(1-3): 96 doi: 10.1016/j.jnucmat.2012.03.029
|
[14] |
Wriedt H A. The O?V (oxygen?vanadium) system. Bull Alloy Phase Diagr, 1989, 10(3): 271 doi: 10.1007/BF02877512
|
[15] |
Natesan K, Soppet W K, Uz M. Effects of oxygen and oxidation on tensile behavior of V?4Cr?4Ti alloy. J Nucl Mater, 1998, 258-263: 1476 doi: 10.1016/S0022-3115(98)00399-7
|
[16] |
Stringer J. The vanadium-oxygen system—a review. J Less Common Met, 1965, 8(1): 1 doi: 10.1016/0022-5088(65)90052-4
|
[17] |
Anderson J S, Khan A S. Phase equilibria in the vanadium-oxygen system. J Less Common Met, 1970, 22(2): 209 doi: 10.1016/0022-5088(70)90021-4
|
[18] |
Mukherjee A, Wach S P. Kinetics of the oxidation of vanadium in the temperature range 350?950 ℃. J Less Common Met, 1983, 92(2): 289 doi: 10.1016/0022-5088(83)90495-2
|
[19] |
Potapenko M M, Drobishev V A, Filkin V Y, et al. Manufacture of semifinished items of alloys V–4Ti–4Cr and V–10Ti–5Cr for use as a structural material in fusion applications. J Nucl Mater, 1996, 233-237: 438 doi: 10.1016/S0022-3115(96)00285-1
|
[20] |
Rowcliffe A F, Hoelzer D T, Kurtz R J, et al. Oxidation behavior of a V?4Cr?4Ti alloy during the commercial processing of thin-wall tubing. J Nucl Mater, 2007, 367-370: 839 doi: 10.1016/j.jnucmat.2007.03.073
|
[21] |
Wilson J R, Lewis M E. Oxidation of vanadium in dry and moist oxygen–argon mixtures. Nature, 1965, 206(4991): 1350
|
[22] |
Price W R, Stringer J. The oxidation of vanadium at high temperatures. J Less Common Met, 1965, 8(3): 165 doi: 10.1016/0022-5088(65)90044-5
|
[23] |
Price W R, Kennett S J, Stringer J. The oxidation of vanadium in the temperature range 700°?1000 ℃: The non-linear rate law. J Less Common Met, 1967, 12(4): 318 doi: 10.1016/0022-5088(67)90129-4
|
[24] |
Fujiwara M, Natesan K, Satou M, et al. Effects of doping elements on oxidation properties of V?Cr?Ti type alloys in several environments. J Nucl Mater, 2002, 307-311: 601 doi: 10.1016/S0022-3115(02)01101-7
|
[25] |
Busch G, Tobin A. Oxidation of vanadium and vanadium alloys in gaseous helium coolants containing water vapor impurities. J Nucl Mater, 1986, 141-143: 599 doi: 10.1016/0022-3115(86)90060-7
|
[26] |
Loomis B A, Wiggins G. Corrosion and oxidation of vanadium-base alloys. J Nucl Mater, 1984, 122(1-3): 693 doi: 10.1016/0022-3115(84)90683-4
|
[27] |
Keller J G, Douglass D L. The high-temperature oxidation behavior of vanadium-aluminum alloys. Oxid Met, 1991, 36(5): 439
|
[28] |
黃維剛, 涂銘旌, 諶繼明. V–4Cr–4Ti合金的氧化特性及氧化物的形成. 稀有金屬材料與工程, 2006, 35(5):695 doi: 10.3321/j.issn:1002-185X.2006.05.006
Huang W G, Tu M J, Chen J M. Oxidizing characteristics and oxide formation of V?4Cr?4Ti alloy. Rare Met Mater Eng, 2006, 35(5): 695 doi: 10.3321/j.issn:1002-185X.2006.05.006
|
[29] |
Pint B A, DiStefano J R. Oxygen embrittlement of vanadium alloys with and without surface oxide formation. J Nucl Mater, 2002, 307-311: 560 doi: 10.1016/S0022-3115(02)01222-9
|
[30] |
Uz M, Natesan K, Hang V B. Oxidation kinetics and microstructure of V-(4-5) wt% Cr-(4-5) wt% Ti alloys exposed to air at 300-650 ℃. J Nucl Mater, 1997, 245(2-3): 191 doi: 10.1016/S0022-3115(97)00008-1
|
[31] |
DiStefano J R, Pint B A, Devan J H, et al. Effects of oxygen and hydrogen at low pressure on the mechanical properties of V?Cr?Ti alloys. J Nucl Mater, 2000, 283-287: 841 doi: 10.1016/S0022-3115(00)00231-2
|
[32] |
諶繼明, 楊霖, 邱紹宇, 等. 釩合金的高溫氧化特性和氫致脆性研究. 稀有金屬材料與工程, 2003, 32(2):113 doi: 10.3321/j.issn:1002-185X.2003.02.008
Chen J M, Yang L, Qiu S Y, et al. Characteristics of the high temperature oxidation and hydrogen embrittlement for vanadium alloys. Rare Met Mater Eng, 2003, 32(2): 113 doi: 10.3321/j.issn:1002-185X.2003.02.008
|
[33] |
Hayakawa R, Hatano Y, Fujii K, et al. Surface segregation and oxidation of Ti in a V–Ti alloy. J Nucl Mater, 2002, 307-311: 580 doi: 10.1016/S0022-3115(02)01100-5
|
[34] |
Pint B A, DiStefano J R. The role of oxygen uptake and scale formation on the embrittlement of vanadium alloys. Oxid Met, 2005, 63(1): 33
|
[35] |
R?hrig H D, DiStefano J R, Chitwood L D. Effect of hydrogen and oxygen on the tensile properties of V?4Cr?4Ti. J Nucl Mater, 1998, 258-263: 1356 doi: 10.1016/S0022-3115(98)00201-3
|
[36] |
Wong C P C, Malang S, Nishio S, et al. Advanced high performance solid wall blanket concepts. Fusion Eng Des, 2002, 61-62: 283 doi: 10.1016/S0920-3796(02)00295-8
|
[37] |
Gohar Y, Majumdar S, Smith D. High power density self-cooled lithium-vanadium blanket. Fusion Eng Des, 2000, 49-50: 551 doi: 10.1016/S0920-3796(00)00279-9
|
[38] |
Pearce R J H, Antipenkov A, Bersier J L, et al. Gas species, their evolution and segregation through the ITER vacuum systems. Vacuum, 2012, 86(11): 1725 doi: 10.1016/j.vacuum.2012.03.048
|
[39] |
Diercks D R, Smith D L. Corrosion behavior of vanadium-base alloys in pressurized water at 288 ℃. J Nucl Mater, 1986, 141-143: 617 doi: 10.1016/0022-3115(86)90064-4
|
[40] |
Sagara A, Motojima O, Watanabe K, et al. Blanket and divertor design for force free helical reactor (FFHR). Fusion Eng Des, 1995, 29: 51 doi: 10.1016/0920-3796(95)80005-I
|
[41] |
Airiskallio E, Nurmi E, Heinonen M H, et al. High temperature oxidation of Fe?Al and Fe?Cr?Al alloys: The role of Cr as a chemically active element. Corros Sci, 2010, 52(10): 3394 doi: 10.1016/j.corsci.2010.06.019
|
[42] |
Zelenitsas K, Tsakiropoulos P. Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb–Ti–Si in situ composites at 800 ℃. Mater Sci Eng A, 2006, 416(1-2): 269 doi: 10.1016/j.msea.2005.10.017
|
[43] |
Unocic K A, Yamamoto Y, Pint B A. Effect of Al and Cr content on air and steam oxidation of FeCrAl alloys and commercial APMT alloy. Oxid Met, 2017, 87(3): 431
|
[44] |
Yang W, Choi K, Baik K H, et al. Oxidation behaviors of Si/Al pack cementation coated Mo?3Si?1B alloys at various temperatures. Met Mater Int, 2021, 27(5): 914 doi: 10.1007/s12540-019-00471-4
|
[45] |
Chaia N, Cury P L, Rodrigues G, et al. Aluminide and silicide diffusion coatings by pack cementation for Nb?Ti?Al alloy. Surf Coat Technol, 2020, 389: 125675 doi: 10.1016/j.surfcoat.2020.125675
|
[46] |
Wu Y N, Wang Q M, Ke P L, et al. Evaluation of arc ion plated NiCoCrAlYSiB coatings after oxidation at 900?1100 ℃. Surf Coat Technol, 2006, 200(9): 2857 doi: 10.1016/j.surfcoat.2005.04.055
|
[47] |
Sarkar S, Datta S, Das S, et al. Oxidation protection of gamma-titanium aluminide using glass-ceramic coatings. Surf Coat Technol, 2009, 203(13): 1797 doi: 10.1016/j.surfcoat.2008.12.029
|
[48] |
陽穎飛, 任盼, 鮑澤斌, 等. 四種典型高溫防護涂層的抗氧化性能. 表面技術, 2020, 49(1):49 doi: 10.16490/j.cnki.issn.1001-3660.2020.01.006
Yang Y F, Ren P, Bao Z B, et al. Isothermal oxidation of four typical high-temperature protective coatings. Surf Technol, 2020, 49(1): 49 doi: 10.16490/j.cnki.issn.1001-3660.2020.01.006
|
[49] |
王心悅, 辛麗, 韋華, 等. 高溫防護涂層研究進展. 腐蝕科學與防護技術, 2013, 25(3):175
Wang X Y, Xin L, Wei H, et al. Progress of high-temperature protective coatings. Corros Sci Prot Technol, 2013, 25(3): 175
|
[50] |
Knaster J, Moeslang A, Muroga T. Materials research for fusion. Nat Phys, 2016, 12(5): 424 doi: 10.1038/nphys3735
|
[51] |
Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales. Oxid Met, 1995, 44(1): 113
|
[52] |
Fujiwara M, Natesan K, Satou M, et al. Effects of doping elements on oxidation properties of low-activation vanadium alloys. Mater Trans, 2001, 42(6): 1048 doi: 10.2320/matertrans.42.1048
|
[53] |
Fujiwara M, Takanashi K, Satou M, et al. Influence of Cr, Ti concentrations on oxidation and corrosion resistance of V?Cr?Ti type alloys. J Nucl Mater, 2004, 329-333: 452 doi: 10.1016/j.jnucmat.2004.04.090
|
[54] |
Satou M, Abe K, Kayano H. High-temperature deformation of modified V?Ti?Cr?Si type alloys. J Nucl Mater, 1991, 179-181: 757 doi: 10.1016/0022-3115(91)90199-H
|
[55] |
Sakai K, Satou M, Fujiwara M, et al. Mechanical properties and microstructures of high-chromium V?Cr?Ti type alloys. J Nucl Mater, 2004, 329-333: 457 doi: 10.1016/j.jnucmat.2004.04.089
|
[56] |
Fujiwara M, Sakamoto T, Satou M, et al. Improvement of corrosion resistance of vanadium alloys in high-temperature pressurized water. Mater Trans, 2005, 46(3): 517 doi: 10.2320/matertrans.46.517
|
[57] |
Yang S W. Effect of Ti and Ta on the oxidation of a complex superalloy. Oxid Met, 1981, 15(5): 375
|
[58] |
Matsushima T, Satou M, Hasegawa A, et al. Tensile properties of a series of V?4Ti?4Cr alloys containing small amounts of Si, Al and Y, and the influence of helium implantation. J Nucl Mater, 1998, 258-263: 1497 doi: 10.1016/S0022-3115(98)00212-8
|
[59] |
Fujiwara M, Satou M, Hasegawa A, et al. Rapid oxidation and its effects on mechanical properties of V?Ti?Cr?Si type alloys. J Nucl Mater, 1998, 258-263: 1507 doi: 10.1016/S0022-3115(98)00214-1
|
[60] |
Satou M, Abe K, Kayano H, et al. Low swelling behavior of V?Ti?Cr?Si?type alloys. J Nucl Mater, 1992, 191-194: 956 doi: 10.1016/0022-3115(92)90615-R
|
[61] |
Satou M, Abe K, Kayano H. Tensile properties and microstructures of neutron irradiated V?Ti?Cr?Si type alloys. J Nucl Mater, 1994, 212-215: 794 doi: 10.1016/0022-3115(94)90165-1
|
[62] |
Fujiwara M, Satou M, Hasegawa A, et al. Oxidation and hardness profile of V?Ti?Cr?Si?Al?Y alloys. J Nucl Mater, 2000, 283-287: 1311 doi: 10.1016/S0022-3115(00)00386-X
|
[63] |
Chen J M, Qiu S Y, Yang L, et al. Effects of oxygen, hydrogen and neutron irradiation on the mechanical properties of several vanadium alloys. J Nucl Mater, 2002, 302(2-3): 135 doi: 10.1016/S0022-3115(02)00775-4
|
[64] |
Gao S, He B, Zhou L Z, et al. Effects of Ta on the high temperature oxidation behavior of IN617 alloy in air. Corros Sci, 2020, 170: 108682 doi: 10.1016/j.corsci.2020.108682
|
[65] |
Meyer M K, Akinc M. Oxidation behavior of boron-modified Mo5Si3 at 800-1300 oC. J Am Ceram Soc, 1996, 79(4): 938 doi: 10.1111/j.1151-2916.1996.tb08528.x
|
[66] |
Williams J, Akinc M. Oxidation behavior of V5Si3 based materials. Intermetallics, 1998, 6(4): 269 doi: 10.1016/S0966-9795(97)00081-2
|
[67] |
Krüger M. High temperature compression strength and oxidation of a V-9Si-13B alloy. Scr Mater, 2016, 121: 75 doi: 10.1016/j.scriptamat.2016.04.042
|
[68] |
Jain U, Sonber J, Tewari R. High temperature oxidation behaviour of V–Ti–Ta alloys. Fusion Eng Des, 2019, 144: 125 doi: 10.1016/j.fusengdes.2019.04.070
|
[69] |
Mathieu S, Chaia N, Le Flem M, et al. Multi-layered silicides coating for vanadium alloys for generation IV reactors. Surf Coat Technol, 2012, 206(22): 4594 doi: 10.1016/j.surfcoat.2012.05.016
|
[70] |
Heo N J, Nagasaka T, Muroga T. Recrystallization and precipitation behavior of low-activation V–Cr–Ti alloys after cold rolling. J Nucl Mater, 2004, 325(1): 53 doi: 10.1016/j.jnucmat.2003.10.012
|
[71] |
Fukumoto K, Morimura T, Tanaka T, et al. Mechanical properties of vanadium based alloys for fusion reactor. J Nucl Mater, 1996, 239: 170 doi: 10.1016/S0022-3115(96)00467-9
|
[72] |
Chaia N, Mathieu S, Cozzika T, et al. An overview of the oxidation performance of silicide diffusion coatings for vanadium-based alloys for generation IV reactors. Corros Sci, 2013, 66: 285 doi: 10.1016/j.corsci.2012.09.031
|
[73] |
Chaia N, Bouizi Y, Mathieu S, et al. Isothermal and cyclic oxidation behaviour of hot-pressed MSi2 compounds (with M = V, Ti, Cr). Intermetallics, 2015, 65: 35 doi: 10.1016/j.intermet.2015.05.005
|
[74] |
Tobin A, Busch G. Evaluation of surface modifications for oxidation protection of vanadium-base alloys in helium-cooled blanket designs. J Nucl Mater, 1986, 141-143: 604 doi: 10.1016/0022-3115(86)90061-9
|
[75] |
彭雪星. V−5Cr−5Ti表面V−Al/Al2O3阻氚涂層的制備及性能研究[學位論文]. 北京: 中國工程物理研究院, 2016
Peng X X. Preparation and Properties of V−Al/Al2O3 Tritium Barrier Coating on V−5Cr−5Ti Surface [Dissertation]. Beijing: China Academy of Engineering Physics, 2016
|
[76] |
Peng X X, Zhang G K, Yang F L, et al. Fabrication and characterization of aluminide coating on V?5Cr?5Ti by electrodeposition and subsequent heat treating. Int J Hydrog Energy, 2016, 41(21): 8935 doi: 10.1016/j.ijhydene.2016.04.067
|
[77] |
鮑澤斌, 蔣成洋, 朱圣龍, 等. 高溫防護金屬涂層的發展及活性元素效應. 航空材料學報, 2018, 38(2):21 doi: 10.11868/j.issn.1005-5053.2018.001004
Bao Z B, Jiang C Y, Zhu S L, et al. High temperature protective bond coats: Development and effect of reactive element. J Aeronaut Mater, 2018, 38(2): 21 doi: 10.11868/j.issn.1005-5053.2018.001004
|
[78] |
唐兆麟, 王福會, 王清江, 等. 涂層對Ti60合金高溫氧化性能及力學性能的影響. 金屬學報, 1998(3):325
Tang Z L, Wang F H, Wang Q J, et al. Effect of coatings on oxidafion resistance and mechanical properties of ti60 alloy. Acta Met Sin, 1998(3): 325
|
[79] |
Tang Z L, Wang F H, Wu W T. Effect of Al2O3 and enamel coatings on 900℃ oxidation and hot corrosion behaviors of gamma-TiAl. Mater Sci Eng A, 2000, 276(1-2): 70 doi: 10.1016/S0921-5093(99)00513-4
|
[80] |
Wu Y N, Zhang G, Feng Z C, et al. Oxidation behavior of laser remelted plasma sprayed NiCrAlY and NiCrAlY–Al2O3 coatings. Surf Coat Technol, 2001, 138(1): 56 doi: 10.1016/S0257-8972(00)01102-6
|
[81] |
Sabanayagam S, Chockalingam S. Analysis of high temperature oxidation behaviour of SS316 by Al2O3 and Cr2O3 coating. Mater Today Proc, 2020, 33: 2641 doi: 10.1016/j.matpr.2020.01.218
|
[82] |
Li W B, Zhu S L, Wang C, et al. SiO2?Al2O3?glass composite coating on Ti?6Al?4V alloy: Oxidation and interfacial reaction behavior. Corros Sci, 2013, 74: 367 doi: 10.1016/j.corsci.2013.05.010
|
[83] |
Keyvani A, Saremi M, Sohi M H. An investigation on oxidation, hot corrosion and mechanical properties of plasma-sprayed conventional and nanostructured YSZ coatings. Surf Coat Technol, 2011, 206(2-3): 208 doi: 10.1016/j.surfcoat.2011.06.036
|
[84] |
Li H Q, Wang Q M, Jiang S M, et al. Ion-plated Al?Al2O3 films as diffusion barriers between NiCrAlY coating and orthorhombic-Ti2AlNb alloy. Corros Sci, 2010, 52(5): 1668 doi: 10.1016/j.corsci.2010.02.002
|
[85] |
He D, Lei Y, Zhang C, et al. Deuterium permeation of Al2O3/Cr2O3 composite film on 316L stainless steel. Int J Hydrog Energy, 2015, 40(6): 2899 doi: 10.1016/j.ijhydene.2014.12.058
|
[86] |
Song X M, Zhang J M, Liu Z W, et al. Thermal shock resistance of YSZ, YSZ–Al2O3 and YSZ–Al2O3/YSZ coatings. Vacuum, 2019, 162: 150 doi: 10.1016/j.vacuum.2019.01.038
|
[87] |
McKee D W, Luthra K L. Plasma-sprayed coatings for titanium alloy oxidation protection. Surf Coat Technol, 1993, 56(2): 109 doi: 10.1016/0257-8972(93)90014-F
|
[88] |
蔣偉忠, 厲益駿. 搪瓷與搪玻璃. 北京: 北京輕工業出版社, 2015
Jiang W Z, Li Y J. Enamel and Enamel Glass. Beijing: Beijing Light Industry Press, 2015
|
[89] |
廖依敏, 陳明輝, 王福會, 等. 自修復金屬搪瓷高溫防護涂層. 表面技術, 2020, 49(1):25 doi: 10.16490/j.cnki.issn.1001-3660.2020.01.003
Liao Y M, Chen M H, Wang F H, et al. Self-healing high-temperature protective metal-enamel composite coatings. Surf Technol, 2020, 49(1): 25 doi: 10.16490/j.cnki.issn.1001-3660.2020.01.003
|
[90] |
Zhu D M, Lou X, Luo F, et al. Preparation and properties of borate glass coatings on Ti-based alloy substrates. Trans Nonferrous Met Soc China, 2007, 17(Suppl 1): 766
|
[91] |
Xiong Y M, Zhu S L, Wang F H. The oxidation behavior of TiAlNb intermetallics with coatings at 800 ℃. Surf Coat Technol, 2005, 197(2-3): 322 doi: 10.1016/j.surfcoat.2004.11.019
|
[92] |
Shishkov N V. Protective enamels for vanadium and its alloys. Glass Ceram, 1996, 53(7): 216 doi: 10.1007/BF01166389
|
[93] |
Wang F H. The effect of nanocrystallization on the selective oxidation and adhesion of Al2O3 scales. Oxid Met, 1997, 48(3): 215
|
[94] |
Va?en R, Jarligo M O, Steinke T, et al. Overview on advanced thermal barrier coatings. Surf Coat Technol, 2010, 205(4): 938 doi: 10.1016/j.surfcoat.2010.08.151
|
[95] |
張高偉, 韓文妥, 崔麗娟, 等. V?4Cr?4Ti/Ti擴散連接的初步研究. 稀有金屬材料與工程, 2018, 47(5):1537
Zhang G W, Han W T, Cui L J, et al. Preliminary study on diffusion bonding of V?4Cr?4Ti/Ti by hot forging process. Rare Met Mater Eng, 2018, 47(5): 1537
|
[96] |
Ramanarayanan T A, Raghavan M, Petkovic-Luton R. Metallic yttrium additions to high temperature alloys: Influence on Al2O3 scale properties. Oxid Met, 1984, 22(3): 83
|
[97] |
Saremi M, Afrasiabi A, Kobayashi A. Microstructural analysis of YSZ and YSZ/Al2O3 plasma sprayed thermal barrier coatings after high temperature oxidation. Surf Coat Technol, 2008, 202(14): 3233 doi: 10.1016/j.surfcoat.2007.11.029
|
[98] |
Rabiei A, Evans A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. Acta Mater, 2000, 48(15): 3963 doi: 10.1016/S1359-6454(00)00171-3
|