<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHONG Hua-jun, JIANG Min, WANG Zhang-yin, LIU Shuai, JIANG Jin-xing, WANG Xin-hua. Formation and evolution of inclusions in the refining process of X80 pipeline steel[J]. Chinese Journal of Engineering, 2023, 45(1): 98-106. doi: 10.13374/j.issn2095-9389.2022.05.23.007
Citation: ZHONG Hua-jun, JIANG Min, WANG Zhang-yin, LIU Shuai, JIANG Jin-xing, WANG Xin-hua. Formation and evolution of inclusions in the refining process of X80 pipeline steel[J]. Chinese Journal of Engineering, 2023, 45(1): 98-106. doi: 10.13374/j.issn2095-9389.2022.05.23.007

Formation and evolution of inclusions in the refining process of X80 pipeline steel

doi: 10.13374/j.issn2095-9389.2022.05.23.007
More Information
  • Corresponding author: E-mail: jiangmin@ustb.edu.cn
  • Received Date: 2022-05-23
    Available Online: 2022-07-15
  • Publish Date: 2023-01-01
  • To further meet the requirements for using pipeline steel in extreme environments and to improve its safety in service, the inclusion control level in pipeline steel urgently needs improvement. In this paper, the variation laws of inclusion type, size, and composition in the refining process of X80 pipeline steel were studied through industrial trial sampling, and the evolution mechanism of inclusions during calcium treatment and steel cooling and solidification was analyzed using thermodynamic calculations with FactSage 8.1 software. The trial results showed mainly MgO–Al2O3 and MgO–Al2O3–CaO inclusions after LF refining in proportions of 25% and 75%, respectively, with sizes mainly distributed between 1–5 μm, and the proportion of inclusions of 1–2 μm and 2–5 μm were 56.0% and 37.3%, respectively. The contents of T[O] and [N] were reduced from 0.0022% and 0.0059% after LF refining to 0.0010% and 0.0035% after RH refining, respectively, and the number density of inclusions was reduced from approximately 23.07 mm?2 after LF to 7.44 mm?2, with an inclusions removal rate of approximately 67.8%. The inclusions were mainly MgO?Al2O3–CaO and CaS–Al2O3–CaO systems during calcium treatment, the average CaS content in the inclusions increased from 8% after RH refining to 36%, and the average CaO content decreased from 24% to 12%. After soft blowing, the SiO2 content ranged from 0 to 2.5% in the inclusions smaller than 40 μm and from 6.0% to 8.0% in the inclusions larger than 40 μm, and the inclusions larger than 40 μm were mainly CaO–Al2O3–MgO–SiO2, whose chemical composition is essentially identical to that of the refining slag, whose source is the refining slag involved; thermodynamic calculations show that when the [Ca] content is between 10.5×10–6–15.8×10–6, all spinel inclusions are modified, and all the inclusions are liquid calcium aluminates; when the steel is at casting temperature, the inclusions are mainly liquid calcium aluminates, and when the temperature is lowered to 1428 ℃, the liquid inclusions completely transform into solid. As the temperature drops below 1309 ℃, the type of inclusions essentially remains constant. During the entire temperature drop, the CaO content in the inclusions decreased, and the CaS content increased.

     

  • loading
  • [1]
    鄧偉, 高秀華, 秦小梅, 等. X80管線鋼的沖擊斷裂行為. 金屬學報, 2010, 46(5):533 doi: 10.3724/SP.J.1037.2009.00461

    Deng W, Gao X H, Qin X M, et al. Impact fracture behavior of X80 pipeline steel. Acta Metall Sin, 2010, 46(5): 533 doi: 10.3724/SP.J.1037.2009.00461
    [2]
    常金寶, 楊文, 張立峰, 等. 管線鋼鑄坯中硫化物特征及形成機理. 鋼鐵, 2019, 54(8):154

    Chang J B, Yang W, Zhang L F, et al. Characteristics and formation mechanism of sulfide in the slab of pipeline steel. Iron Steel, 2019, 54(8): 154
    [3]
    鎮凡, 劉靜, 黃峰, 等. 夾雜物對X120管線鋼氫致開裂的影響. 中國腐蝕與防護學報, 2010, 30(2):145

    Zhen F, Liu J, Huang F, et al. Effect of the nonmetallic inclusions on the hic behavior of X120 pipeline steel. J Chin Soc Corros Prot, 2010, 30(2): 145
    [4]
    Domizzi G, Anteri G, Ovejero-Garc??a J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels. Corros Sci, 2001, 43(2): 325 doi: 10.1016/S0010-938X(00)00084-6
    [5]
    初仁生, 楊光維, 黃福祥, 等. 鈣處理工藝對X70管線鋼夾雜物的影響. 鋼鐵研究學報, 2013, 25(5):24

    Chu R S, Yang G W, Huang F X, et al. Effect of calcium treatment on non-metallic inclusions in X70 pipeline. J Iron Steel Res, 2013, 25(5): 24
    [6]
    劉亮. 太鋼耐酸管線鋼潔凈度控制技術研究[學位論文]. 北京: 北京科技大學, 2017

    Liu L. Study on Cleanliness Control Technolohy of Acid-resistant Pipeline Steel in Tisco [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
    [7]
    唐德池, 張宏艷, 吉立鵬, 等. 鈣處理車輪鋼潔凈度. 鋼鐵, 2018, 53(4):37 doi: 10.13228/j.boyuan.issn0449-749x.20170387

    Tang D C, Zhang H Y, Ji L P, et al. Cleanliness of calcium-treated wheel steel. Iron Steel, 2018, 53(4): 37 doi: 10.13228/j.boyuan.issn0449-749x.20170387
    [8]
    楊光維, 陳兆平, 柳向椿. 非鈣處理對高等級齒輪鋼夾雜物的影響. 鋼鐵, 2020, 55(4):40 doi: 10.13228/j.boyuan.issn0449-749x.20190292

    Yang G W, Chen Z P, Liu X C. Effect of non-calcium treatment on inclusions in high grade case hardening steel. Iron Steel, 2020, 55(4): 40 doi: 10.13228/j.boyuan.issn0449-749x.20190292
    [9]
    郝鑫, 陳振業, 白雪瑩, 等. 高級別管線鋼B類夾雜物控制研究. 煉鋼, 2019, 35(3):74

    Hao X, Chen Z Y, Bai X Y, et al. Study on control of B-type inclusion in high grade pipeline steel. Steelmaking, 2019, 35(3): 74
    [10]
    劉建華, 包燕平, 王敏, 等. X70管線鋼鈣處理研究. 鋼鐵, 2010, 45(2):40 doi: 10.13228/j.boyuan.issn0449-749x.2010.02.030

    Liu J H, Bao Y P, Wang M, et al. Investigation of calcium treatment in X70 pipeline steel. Iron Steel, 2010, 45(2): 40 doi: 10.13228/j.boyuan.issn0449-749x.2010.02.030
    [11]
    Liu J H, Wu H J, Bao Y P, et al. Inclusion variations and calcium treatment optimization in pipeline steel production. Int J Miner Metall Mater, 2011, 18(5): 527 doi: 10.1007/s12613-011-0473-2
    [12]
    劉延強, 張鵬, 何文遠, 等. X65管線鋼全流程夾雜物轉變規律及控制. 鋼鐵, 2018, 53(12):44

    Liu Y Q, Zhang P, He W Y, et al. Transformation behavior and control of inclusions in X65 pipelinesteel during whole process. Iron Steel, 2018, 53(12): 44
    [13]
    Xu J F, Huang F X, Wang X H. Formation mechanism of CaS–Al2O3 inclusions in low sulfur Al-killed steel after calcium treatment. Metall Mater Trans B, 2016, 47(2): 1217 doi: 10.1007/s11663-016-0599-8
    [14]
    袁天祥, 張丙龍, 劉延強, 等. 高級別管線鋼夾雜物控制研究. 中國冶金, 2020, 30(11):85

    Yuan T X, Zhang B L, Liu Y Q, et al. Study on inclusion control of high grade pipeline steel. China Metall, 2020, 30(11): 85
    [15]
    Zhao D W, Li H B, Bao C L, et al. Inclusion evolution during modification of alumina inclusions by calcium in liquid steel and deformation during hot rolling process. ISIJ Int, 2015, 55(10): 2115 doi: 10.2355/isijinternational.ISIJINT-2015-064
    [16]
    楊文, 李超, 張立峰, 等. 優化鈣處理工藝減少管線鋼B類夾雜物. 中國冶金, 2018, 28(增刊1): 70

    Yang W, Li C, Zhang L F, et al. Reduction of B type inclusions in pipeline steel by optimizing calcium treatment. China Metall, 2018, 28(Suppl 1): 70
    [17]
    Wang X H, Li X G, Li Q, et al. Control of stringer shaped non-metallic inclusions of CaO–Al2O3 system in API X80 linepipe steel plates. Steel Res Int, 2014, 85(2): 155 doi: 10.1002/srin.201300044
    [18]
    王新華, 李秀剛, 李強, 等. X80管線鋼板中條串狀CaO–Al2O3系非金屬夾雜物的控制. 金屬學報, 2013, 49(5):553 doi: 10.3724/SP.J.1037.2012.00505

    Wang X H, Li X G, Li Q, et al. Control of string shaped non-metallic inclusions of Cao–Al2O3 system in X80 pipeline steel plates. Acta Metall Sin, 2013, 49(5): 553 doi: 10.3724/SP.J.1037.2012.00505
    [19]
    Yang J, Wang X H, Jiang M, et al. Effect of calcium treatment on non-metallic inclusions in ultra-low oxygen steel refined by high basicity high Al2O3 slag. J Iron Steel Res Int, 2011, 18(7): 8 doi: 10.1016/S1006-706X(11)60083-6
    [20]
    趙沛. 爐外精煉及鐵水預處理實用技術手冊. 北京: 冶金工業出版社, 2004

    Zhao P. Technical Handbook of Secondary Refining and Hot Metal Pretreatment. Beijing: Metallurgical Industry Press, 2004
    [21]
    趙成林, 廖相巍, 張寧, 等. 提高管線鋼潔凈度的工藝技術研究. 鞍鋼技術, 2015(6):20 doi: 10.3969/j.issn.1006-4613.2015.06.005

    Zhao C L, Liao X W, Zhang N, et al. Study on technology for improving cleanliness of pipeline steel. Angang Technol, 2015(6): 20 doi: 10.3969/j.issn.1006-4613.2015.06.005
    [22]
    李強, 王建, 王新華, 等. X80管線鋼鈣處理后軟吹時間對夾雜物行為的影響. 鋼鐵釩鈦, 2011, 32(2):74 doi: 10.7513/j.issn.1004-7638.2011.02.016

    Li Q, Wang J, Wang X H, et al. Effects of soft blowing time on behavior of nonmetallic inclusions after calcium treatment in X80 pipeline steel. Iron Steel Vanadium Titanium, 2011, 32(2): 74 doi: 10.7513/j.issn.1004-7638.2011.02.016
    [23]
    Liu C Y, Gao X, Ueda S, et al. Change in composition of inclusions through the reaction between Al-killed steel and the slag of CaO and MgO saturation. ISIJ Int, 2019, 59(2): 268 doi: 10.2355/isijinternational.ISIJINT-2018-584
    [24]
    姜敏, 王昆鵬, 侯澤旺, 等. 低氧特殊鋼中大尺寸DS類夾雜物生成機理. 工程科學學報, 2016, 38(6):780

    Jiang M, Wang K P, Hou Z W, et al. Formation mechanism of oversized DS-type inclusions in low oxygen special steel. Chin J Eng, 2016, 38(6): 780
    [25]
    Piva S P T, Pistorius P C. Ferrosilicon-based calcium treatment of aluminum-killed and silicomanganese-killed steels. Metall Mater Trans B, 2021, 52(1): 6 doi: 10.1007/s11663-020-02017-1
    [26]
    音正元, 張立峰, 李超, 等. Q345D鋼中含鈣類夾雜物的演變和生成機理分析. 鋼鐵, 2020, 55(11):47 doi: 10.13228/j.boyuan.issn0449-749x.20200208

    Yin Z Y, Zhang L F, Li C, et al. Analysis of evolution and formation mechanism of calcium-containing inclusions of Q345D steel. Iron Steel, 2020, 55(11): 47 doi: 10.13228/j.boyuan.issn0449-749x.20200208
    [27]
    王舉金, 張立峰, 陳威, 等. 卷渣類夾雜物在結晶器鋼液中成分轉變的動力學模型. 工程科學學報, 2021, 43(6):786

    Wang J J, Zhang L F, Chen W, et al. Kinetic model of the composition transformation of slag inclusions in molten steel in continuous casting mold. Chin J Eng, 2021, 43(6): 786
    [28]
    鄭萬, 屠浩, 李光強, 等. 250 t鋼包底吹氬卷渣和鋼液裸漏的模擬. 過程工程學報, 2014, 14(3):361

    Zheng W, Tu H, Li G Q, et al. Modeling of slag entrapment and molten steel exposed to atmosphere in refining of 250 t ladle with bottom-blown argon. Chin J Process Eng, 2014, 14(3): 361
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (555) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频