Citation: | ZHAO Min, ZHANG Xiang, FU Qiang, ZHANG Chun-hua, HE Wei. Research progress on the energy consumption of bionic flapping-wing aerial vehicles[J]. Chinese Journal of Engineering, 2022, 44(12): 2111-2123. doi: 10.13374/j.issn2095-9389.2022.05.17.003 |
[1] |
Ramasamy M, Lee T E, Leishman J G. Flow field of a rotating-wing micro air vehicle. J Aircr, 2007, 44(4): 1236 doi: 10.2514/1.26415
|
[2] |
賀威, 丁施強, 孫長銀. 撲翼飛行器的建模與控制研究進展. 自動化學報, 2017, 43(5):685 doi: 10.16383/j.aas.2017.c160581
He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Autom Sin, 2017, 43(5): 685 doi: 10.16383/j.aas.2017.c160581
|
[3] |
Ma K Y, Chirarattananon P, Fuller S B, et al. Controlled flight of a biologically inspired, insect-scale robot. Science, 2013, 340(6132): 603 doi: 10.1126/science.1231806
|
[4] |
Graule M A, Chirarattananon P, Fuller S B, et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion. Science, 2016, 352(6288): 978 doi: 10.1126/science.aaf1092
|
[5] |
Chen Y F, Wang H Q, Helbling E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci Robot, 2017, 2(11): eaao5619 doi: 10.1126/scirobotics.aao5619
|
[6] |
Jafferis N T, Helbling E F, Karpelson M, et al. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature, 2019, 570(7762): 491 doi: 10.1038/s41586-019-1322-0
|
[7] |
De Croon G C, De Clercq K M, Ruijsink R, et al. Design, aerodynamics, and vision-based control of the DelFly. Int J Micro Air Veh, 2009, 1(2): 71 doi: 10.1260/175682909789498288
|
[8] |
Scheper K Y W, Karásek M, Wagter C D, et al. First autonomous multi-room exploration with an insect-inspired flapping wing vehicle // 2018 IEEE International Conference on Robotics and Automation. Brisbane, 2018: 5546
|
[9] |
Karásek M, Muijres F T, De Wagter C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science, 2018, 361(6407): 1089 doi: 10.1126/science.aat0350
|
[10] |
Phan H V, Kang T, Park H C. Design and stable flight of a 21g insect-like tailless flapping wing micro air vehicle with angular rates feedback control. Bioinspir Biomim, 2017, 12(3): 036006 doi: 10.1088/1748-3190/aa65db
|
[11] |
Phan H V, Aurecianus S, Kang T, et al. KUBeetle-S: An insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism. Int J Micro Air Veh, 2019, 11: 1756829319861371
|
[12] |
Phan H V, Park H C. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science, 2020, 370(6521): 1214 doi: 10.1126/science.abd3285
|
[13] |
Jackowski Z J. Design and Construction of an Autonomous Ornithopter [Dissertation]. Cambridge: Massachusetts Institute of Technology, 2009
|
[14] |
Zufferey R, Tormo-Barbero J, Guzmán M M, et al. Design of the high-payload flapping wing robot E-flap. IEEE Robotics Autom Lett, 2021, 6(2): 3097 doi: 10.1109/LRA.2021.3061373
|
[15] |
Send W, Fischer M, Jebens K, et al. Artificial hinged-wing bird with active torsion and partially linear kinematics // 28th International Congress of the Aeronautical Sciences. Brisbane, 2012: 1
|
[16] |
Keennon M, Klingebiel K, Won H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle // 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, 2012: 588
|
[17] |
賀威, 劉上平, 黃海豐, 等. 獨立驅動的仿鳥撲翼飛行機器人的系統設計與實驗. 控制理論與應用, 2022, 39(1):12 doi: 10.7641/CTA.2021.00394
He W, Liu S P, Huang H F, et al. System design and experiment of an independently driven bird-like flapping-wing robot. Control Theory Appl, 2022, 39(1): 12 doi: 10.7641/CTA.2021.00394
|
[18] |
Fu Q, Wang X Q, Zou Y, et al. A miniature video stabilization system for flapping-wing aerial vehicles. Guid Navigat Control, 2022, 2(1): 2250001 doi: 10.1142/S2737480722500017
|
[19] |
Huang H F, He W, Wang J B, et al. An all servo-driven bird-like flapping-wing aerial robot capable of autonomous flight. IEEE/ ASME Trans Mech, 2022, http://dx.doi.org/10.1109/TMECH.2022.3182418
|
[20] |
He W, Mu X X, Zhang L, et al. Modeling and trajectory tracking control for flapping-wing micro aerial vehicles. IEEE/CAA J Automatic Sin, 2020, 8(1): 148
|
[21] |
黃海豐, 賀威, 鄒堯, 等. 基于線驅轉向的仿蝴蝶撲翼飛行機器人系統設計與控制. 控制理論與應用, http://kns.cnki.net/kcms/detail/44.1240.TP.20211117.1454.048.html
Huang H F, He W, Zou Y, et al. System design and control of a butterfly-inspired flapping-wing aerial robot based on wire-driven steering. Control Theory Appl, http://kns.cnki.net/kcms/detail/44.1240.TP.20211117.1454.048.html
|
[22] |
Yang W Q, Wang L G, Song B F. Dove: A biomimetic flapping-wing micro air vehicle. Int J Micro Air Veh, 2018, 10(1): 70 doi: 10.1177/1756829317734837
|
[23] |
Pan E Z, Xu H, Yuan H, et al. HIT-Hawk and HIT-Phoenix: Two kinds of flapping-wing flying robotic birds with wingspans beyond 2 meters. Biomim Intell Robotics, 2021, 1: 100002 doi: 10.1016/j.birob.2021.100002
|
[24] |
張益鑫, 王興堅, 王少萍, 等. 基于特征運動觀測的蝴蝶前飛規律及樣機驗證. 北京航空航天大學學報,https://kns.cnki.net/kcms/detail/11.2625.V.20210913.1521.002.html
Zhang Y X, Wang X J, Wang S P, et al. Mechanism of butterfly forward flight and prototype verification based on characteristic motion observation. J Beijing Univ Aeronaut Astronaut, https://kns.cnki.net/kcms/detail/11.2625.V.20210913.1521.002.html
|
[25] |
遲鵬程, 張衛平, 陳文元, 等. 基于MEMS技術的SU-8仿昆蟲微撲翼飛行器設計及制作. 機器人, 2011, 33(3):366 doi: 10.3724/SP.J.1218.2011.00366
Chi P C, Zhang W P, Chen W Y, et al. Design and fabrication of an SU-8 biomimetic flapping-wing micro air vehicle by MEMS technology. Robot, 2011, 33(3): 366 doi: 10.3724/SP.J.1218.2011.00366
|
[26] |
Zou Y, Zhang W P, Ke X J, et al. The design and microfabrication of a sub 100 Mg insect-scale flapping-wing robot. Micro Nano Lett, 2017, 12(5): 297 doi: 10.1049/mnl.2016.0687
|
[27] |
付強, 張祥, 趙民, 等. 仿生撲翼飛行器風洞實驗研究進展. 工程科學學報, 2022, 44(4):767
Fu Q, Zhang X, Zhao M, et al. Research progress on the wind tunnel experiment of a bionic flapping-wing aerial vehicle. Chin J Eng, 2022, 44(4): 767
|
[28] |
蔡常睿. 基于信鴿翅膀的仿生機翼氣動性能研究[學位論文]. 長春: 吉林大學, 2018
Cai C R. Study on Aerodynamic Performance of Bionic Wing Based on Carrier Pigeon Wing [Dissertation]. Changchun: Jilin University, 2018
|
[29] |
劉嵐. 微型撲翼飛行器的仿生翼設計技術研究[學位論文]. 西安: 西北工業大學, 2007
Liu L. The Design Technologies of Biomimetic Wings for Flapping-Wing MAVs [Dissertation]. Xi’an: Northwestern Polytechnical University, 2007
|
[30] |
Wu J C, Popovi Z. Realistic modeling of bird flight animations. Acm Trans Graph, 2003, 22(3): 888 doi: 10.1145/882262.882360
|
[31] |
Bajec I L, Heppner F H. Organized flight in birds. Animal Behav, 2009, 78(4): 777 doi: 10.1016/j.anbehav.2009.07.007
|
[32] |
楊永剛, 蘇漢平, 顧新冬, 等. 飛行角度及彎曲折疊對仿鳥撲翼飛行器影響分析. 系統仿真學報, 2018, 30(5):1781 doi: 10.16182/j.issn1004731x.joss.201805020
Yang Y G, Su H P, Gu X D, et al. Numerical simulation analysis of the effects of flight angle and bend-fold on bird-like flapping-wing air vehicle. J Syst Simul, 2018, 30(5): 1781 doi: 10.16182/j.issn1004731x.joss.201805020
|
[33] |
Dickinson M H. Come fly with me. Eng Sci, 2003, 3: 10
|
[34] |
Gu W, Robinson O, Rockwell D. Control of vortices on a delta wing by leading-edge injection. AIAA J, 1993, 31(7): 1177 doi: 10.2514/3.11749
|
[35] |
Wang Q, Goosen J F L, Van Keulen A. Optimal hovering kinematics with respect to various flapping-wing shapes // IMAV 2013: Proceedings of the International Micro Air Vehicle Conference and Flight Competition. Toulouse, 2013
|
[36] |
尹東富. 仿蝙蝠機器翅設計與蝙蝠翅膀受力及功耗研究[學位論文]. 南京: 東南大學, 2016
Yin D F. Design of Robotic Bat Wing and Research on the Force and Power of Bat Wing [Dissertation]. Nanjing: Southeast University, 2016
|
[37] |
Li M, Liu T, Shi Z, et al. Dense all‐electrochem-active electrodes for all-solid-state lithium batteries. Adv Mater, 2021, 33(26): 2008723 doi: 10.1002/adma.202008723
|
[38] |
左文婧, 屈銀虎, 祁攀虎, 等. 3D打印鋰離子電池正極的制備及性能. 工程科學學報, 2020, 42(3):358
Zuo W J, Qu Y H, Qi P H, et al. Preparation and performance of 3D-printed positive electrode for lithium-ion battery. Chin J Eng, 2020, 42(3): 358
|
[39] |
劉遠峰, 張秀玲, 李從舉. 微生物燃料電池碳基陽極材料的研究進展. 工程科學學報, 2020, 42(3):270
Liu Y F, Zhang X L, Li C J. Advances in carbon-based anode materials for microbial fuel cells. Chin J Eng, 2020, 42(3): 270
|
[40] |
劉懿, 張艷來. 撲翼微型飛行器氣動特性與能耗研究//第十屆全國流體力學學術會議. 杭州, 2018: 247
Liu Y, Zhang Y L. Study on aerodynamic characteristics and energy consumption of flapping wing micro air vehicle // 10th National Conference on Fluid Mechanics. Hangzhou, 2018: 247
|
[41] |
吳應東. 仿生撲翼微型飛行器的機翼設計及其氣動特性研究[學位論文]. 成都: 電子科技大學, 2020
Wu Y D. Study on Aerodynamic Characteristics and the Design of Wings of Bio-Inspired Flapping Wing Micro Aerial Vehicles [Dissertation]. Chengdu: University of Electronic Science and Technology of China, 2020
|
[42] |
Nguyen T A, Phan H V, Au T K L, et al. Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism. Bioinspir Biomim, 2016, 11(4): 046001 doi: 10.1088/1748-3190/11/4/046001
|
[43] |
Mountcastle A M, Combes S A. Wing flexibility enhances load-lifting capacity in bumblebees. Proc Bio Sci, 2013, 280(1759): 20130531
|
[44] |
Nakata T, Liu H. Aerodynamic performance of a hovering hawkmoth with flexible wings: A computational approach. Proc Biol Sci, 2012, 279(1729): 722
|
[45] |
Thiria B, Godoy-Diana R. How wing compliance drives the efficiency of self-propelled flapping flyers. Phys Rev E Stat Nonlin Soft Matter Phys, 2010, 82(1 Pt 2): 015303
|
[46] |
Shang J K, Combes S A, Finio B M, et al. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Bioinspir Biomim, 2009, 4(3): 036002 doi: 10.1088/1748-3182/4/3/036002
|
[47] |
房志飛. 微型撲翼飛行器能量回收翅翼的設計與實驗研究[學位論文]. 長春: 吉林大學, 2019
Fang Z F. Design and Experimental Study on Energy Recovery Wings of Flapping-Wing Micro Air Vehicle [Dissertation]. Changchun: Jilin University, 2019
|
[48] |
Perez-Rosado A, Bruck H A, Gupta S K. Enhancing the design of solar-powered flapping wing air vehicles using multifunctional structural components // International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Boston, 2015: 47570
|
[49] |
Yang W Q, Song B F, Gao G L, et al. Experimental study on aerodynamic performance of flapping wing with one-way holes/gaps // Asia-Pacific International Symposium on Aerospace Technology. Singapore, 2018: 1160
|
[50] |
付鵬, 宋筆鋒, 梁少然, 等. 撲翼的推力特性與功率特性的實驗研究. 西北工業大學學報, 2016, 34(6):976 doi: 10.3969/j.issn.1000-2758.2016.06.008
Fu P, Song B F, Liang S R, et al. An experimental research about the characteristics of thrust and power FWAV. J Northwest Polytech Univ, 2016, 34(6): 976 doi: 10.3969/j.issn.1000-2758.2016.06.008
|
[51] |
Ke X J, Zhang W P, Cai X F, et al. Wing geometry and kinematic parameters optimization of flapping wing hovering flight for minimum energy. Aerosp Sci Technol, 2017, 64: 192 doi: 10.1016/j.ast.2017.01.019
|
[52] |
Wang Q, Goosen J F L, Keulen F V. Optimal pitching axis location of flapping wings for efficient hovering flight. Bioinspir Biomim, 2017, 12(5): 056001 doi: 10.1088/1748-3190/aa7795
|
[53] |
Shahzad A, Tian F B, Young J, et al. Effects of flexibility on the hovering performance of flapping wings with different shapes and aspect ratios. J Fluids Struct, 2018, 81: 69 doi: 10.1016/j.jfluidstructs.2018.04.019
|
[54] |
van Truong T, le T Q, Byun D, et al. Flexible wing kinematics of a free-flying beetle (rhinoceros beetle trypoxylus dichotomus). J Bionic Eng, 2012, 9(2): 177 doi: 10.1016/S1672-6529(11)60113-3
|
[55] |
Zeng L J, Hao Q, Kawachi K. A scanning projected line method for measuring a beating bumblebee wing. Opt Commun, 2000, 183(1-4): 37 doi: 10.1016/S0030-4018(00)00888-9
|
[56] |
Walker S M, Thomas A, Taylor G K. Deformable wing kinematics in free-flying hoverflies. J R Soc Interface, 2010, 7(42): 131 doi: 10.1098/rsif.2009.0120
|
[57] |
Wootton R J. Leading edge section and asymmetric twisting in the wings of flying butterflies (Insecta, papilionoidea). J Exp Biol, 1993: 105
|
[58] |
Young J, Walker S M, Bomphrey R J, et al. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 2009, 325(5947): 1549 doi: 10.1126/science.1175928
|
[59] |
Zheng L, Hedrick T L, Mittal R. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS One, 2013, 8(1): e53060 doi: 10.1371/journal.pone.0053060
|
[60] |
Le T Q, Truong T V, Park S H, et al. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight. J R Soc Interface, 2013, 10(85): 20130312 doi: 10.1098/rsif.2013.0312
|
[61] |
Du G, Sun M. Effects of wing deformation on aerodynamic forces in hovering hoverflies. J Exp Biol, 2010, 213(13): 2273 doi: 10.1242/jeb.040295
|
[62] |
Phan H V, Truong Q T, Au T K L, et al. Optimal flapping wing for maximum vertical aerodynamic force in hover: Twisted or flat? Bioinspir biomim, 2016, 11(4): 046007
|
[63] |
Jankauski M, Guo Z W, Shen I Y. The effect of structural deformation on flapping wing energetics. J Sound Vib, 2018, 429: 176 doi: 10.1016/j.jsv.2018.05.005
|
[64] |
Lehmann F O, Gorb S, Nasir N, et al. Elastic deformation and energy loss of flapping fly wings. J Exp Biol, 2011, 214(17): 2949 doi: 10.1242/jeb.045351
|
[65] |
Zhang C, Rossi C. A review of compliant transmission mechanisms for bio-inspired flapping-wing micro air vehicles. Bioinspir Biomim, 2017, 12(2): 025005 doi: 10.1088/1748-3190/aa58d3
|
[66] |
張威, 劉光澤, 張博利. 撲翼飛行器具有彈性阻尼撲動機構的能耗對比分析與研究. 航空學報, 2018, 39(9):421979 doi: 10.7527/S1000-6893.2018.21966
Zhang W, Liu G Z, Zhang B L. Energy consumption comparative analysis and research of flapping wing vehicle with elastic damping flapping mechanism. Acta Aerobaut Astronaut Sin, 2018, 39(9): 421979 doi: 10.7527/S1000-6893.2018.21966
|
[67] |
Sahai R, Galloway K C, Wood R J. Elastic element integration for improved flapping-wing micro air vehicle performance. IEEE Trans Robotics, 2013, 29(1): 32 doi: 10.1109/TRO.2012.2218936
|
[68] |
Lau G K, Chin Y W, Goh J T W, et al. Dipteran-insect-inspired thoracic mechanism with nonlinear stiffness to save inertial power of flapping-wing flight. IEEE Trans Robotics, 2014, 30(5): 1187 doi: 10.1109/TRO.2014.2333112
|
[69] |
Hines L, Campolo D, Sitti M. Liftoff of a motor-driven, flapping-wing microaerial vehicle capable of resonance. IEEE Trans Robotics, 2014, 30(1): 220 doi: 10.1109/TRO.2013.2280057
|
[70] |
王紅超, 杜小雷. 一種新型仿鳥撲翼機構. 唐山師范學院學報, 2019, 41(6):62 doi: 10.3969/j.issn.1009-9115.2019.06.016
Wang H C, Du X L. A new kind of imitation bird flapping wing mechanism. J Tangshan Norm Univ, 2019, 41(6): 62 doi: 10.3969/j.issn.1009-9115.2019.06.016
|
[71] |
付強, 張樹禹, 王久斌, 等. 基于外部單目視覺的仿生撲翼飛行器室內定高控制. 工程科學學報, 2020, 42(2):249
Fu Q, Zhang S Y, Wang J B, et al. Indoor fixed-height control for bio-inspired flapping-wing aerial vehicles based on offboard monocular vision. Chin J Eng, 2020, 42(2): 249
|
[72] |
Fu Q, Wang J, Gong L, et al. Obstacle avoidance of flapping-wing air vehicles based on optical flow and fuzzy control. Trans Nanjing Univ Aeronaut Astronaut, 2021, 38(2): 206
|
[73] |
Li L, Wang H W, Cui L. Attitude control of flapping wing aircraft based on energy optimization and ESO. Biomim Intell Robotics, 2021, 1: 100005 doi: 10.1016/j.birob.2021.100005
|
[74] |
Rodríguez F, Díaz-Bá?ez J M, Sanchez-Laulhe E, et al. Kinodynamic planning for an energy-efficient autonomous ornithopter. Comput Ind Eng, 2022, 163: 107814 doi: 10.1016/j.cie.2021.107814
|
[75] |
Hosoi A, Sato S, Ozawa Y, et al. A study on glide characteristics of a small flapping robot. J Japan Soc Design Eng, 2019, 54(4): 265
|
[76] |
蔣國江. 撲翼變形飛行器的動力學建模與飛行仿真[學位論文]. 長沙: 國防科學技術大學, 2015
Jiang G J. Dynamics Modeling and Flight Simulation of Flapping Wing Aircraft [Dissertation]. Changsha: National University of Defense Technology, 2015
|
[77] |
Johnson L, Paley D A, Bruck H A. Modeling flight and battery dynamics of a flapping-gliding unmanned aerial vehicle. J Guid Control Dyn, 2021, 44(12): 2276 doi: 10.2514/1.G006138
|
[78] |
Johnson L, Paley D A, Bruck H A. Modeling the flight dynamics and battery utilization of a hybrid flapping-gliding UAV // AIAA Scitech 2021 Forum. Nashville. 2021: 2017
|
[79] |
Chen A, Song B F, Wang Z H, et al. A novel actuation strategy for an agile bio-inspired FWAV performing a morphing-coupled wingbeat pattern [J/OL]. arXiv preprint (2021-12-3) [2022-5-17].https://arxiv.org/abs/2111.02118
|
[80] |
Ma D F, Song B F, Wang Z H, et al. Development of a bird-like flapping-wing aerial vehicle with autonomous take-off and landing capabilities. J Bionic Eng, 2021, 18(6): 1291 doi: 10.1007/s42235-021-00085-w
|
[81] |
Weimerskirch H, Martin J, Clerquin Y, et al. Energy saving in flight formation. Nature, 2001, 413(6857): 697 doi: 10.1038/35099670
|
[82] |
Voelkl B, Portugal S J, Uns?ld M, et al. Matching times of leading and following suggest cooperation through direct reciprocity during V-formation flight in ibis. PNAS, 2015, 112(7): 2115 doi: 10.1073/pnas.1413589112
|
[83] |
Andersson M, Wallander J. Kin selection and reciprocity in flight formation? Behav Ecol, 2004, 15(1): 158
|
[84] |
邱華鑫, 段海濱, 范彥銘. 基于鴿群行為機制的多無人機自主編隊. 控制理論與應用, 2015, 32(10):1298 doi: 10.7641/CTA.2015.50314
Qiu H X, Duan H B, Fan Y M. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks. Control Theory &Appl, 2015, 32(10): 1298 doi: 10.7641/CTA.2015.50314
|
[85] |
尹曌, 賀威, 鄒堯, 等. 基于“雁陣效應”的撲翼飛行機器人高效集群編隊研究. 自動化學報, 2021, 47(6):1355
Yin Z, He W, Zou Y, et al. Efficient formation of flapping-wing aerial vehicles based on wild geese queue effect. Acta Autom Sin, 2021, 47(6): 1355
|
[86] |
Rayner J M. Estimating power curves of flying vertebrates. J Exp Biol, 1999, 202(pt 23): 3449
|
[87] |
Feng B B, Chen D R, Wang J D, et al. Bionic research on bird feather for drag reduction. Adv Mech Eng, 2015, 7(2): 849294 doi: 10.1155/2014/849294
|
[88] |
Bao H, Yang W Q, Ma D, et al. Numerical simulation of flapping airfoil with alula. Int J Micro Air Veh, 2020, 12: 1756829320977989
|
[89] |
Meng X G, Sun M. Aerodynamic effects of corrugation in flapping insect wings in forward flight. J Bionic Eng, 2011, 8(2): 140 doi: 10.1016/S1672-6529(11)60015-2
|
[90] |
張子慧. 鳥類肌肉系統研究綜述. 動物學雜志, 1999, 34(5):41 doi: 10.3969/j.issn.0250-3263.1999.05.014
Zhang Z H. A review of musculature studies in birds. Chin J Zool, 1999, 34(5): 41 doi: 10.3969/j.issn.0250-3263.1999.05.014
|
[91] |
張博利, 劉新杰, 王昊, 等. 彈性元件參數優化對撲翼機構轉速波動影響研究. 機械科學與技術, 2021, 40(5):801
Zhang B L, Liu X J, Wang H, et al. Influence of elastic element parameters optimization on flapping wing transmission mechanism. Mech Sci Technol Aerosp Eng, 2021, 40(5): 801
|
[92] |
張威, 劉新杰, 劉艷, 等. 帶彈性元件撲翼機構的動力學分析及實驗. 航空學報, 2020, 41(9):423559
Zhang W, Liu X J, Liu Y, et al. Flapping mechanism with elastic components: Dynamic analysis and experiment. Acta Aeronaut Astronaut Sin, 2020, 41(9): 423559
|
[93] |
謝鵬, 姜洪利, 周超英. 一種仿生撲翼飛行器的設計及動力學分析. 航空動力學報, 2018, 33(3):703
Xie P, Jiang H L, Zhou C Y. Design and dynamic analysis of a flapping wing air vehicle. J Aerosp Power, 2018, 33(3): 703
|