Citation: | LIU Juan-hong, AN Shu-hao, WU Ai-xiang, WANG Hong-jiang, ZHANG Yue-yue. Early hydration and liquid phase characteristics of solidified body of clinker-free superfine tailings[J]. Chinese Journal of Engineering, 2022, 44(12): 1999-2007. doi: 10.13374/j.issn2095-9389.2022.05.12.001 |
[1] |
王海軍, 王伊杰, 李文超. 全國礦產資源節約與綜合利用報告. 北京: 地質出版社, 2019
Wang H J, Wang Y J, Li W C. Report of Mineral Resources Saving & Comprehensive Utilization in China. Beijing: Geological Publishing House, 2019
|
[2] |
程海勇, 吳愛祥, 吳順川, 等. 金屬礦山固廢充填研究現狀與發展趨勢. 工程科學學報, 2022, 44(1):11
Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11
|
[3] |
劉倩影, 劉娟紅, 王洪江, 等. 細粒級全尾砂膏體充填材料性能調控研究. 金屬礦山, 2021(10):51 doi: 10.19614/j.cnki.jsks.202110008
Liu Q Y, Liu J H, Wang H J, et al. Study on performance control of fine grained tailings paste filling material. Met Mine, 2021(10): 51 doi: 10.19614/j.cnki.jsks.202110008
|
[4] |
劉娟紅, 周在波, 吳愛祥, 等. 低濃度拜耳赤泥充填材料制備及水化機理. 工程科學學報, 2020, 42(11):1457
Liu J H, Zhou Z B, Wu A X, et al. Preparation and hydration mechanism of low concentration Bayer red mud filling materials. Chin J Eng, 2020, 42(11): 1457
|
[5] |
Liu J H, Zhou Y C, Wu A X, et al. Reconstruction of broken Si–O–Si bonds in iron ore tailings (IOTs) in concrete. Int J Miner Metall Mater, 2019, 26(10): 1329 doi: 10.1007/s12613-019-1811-z
|
[6] |
Sanish K B, Neithalath N, Santhanam M. Monitoring the evolution of material structure in cement pastes and concretes using electrical property measurements. Constr Build Mater, 2013, 49: 288 doi: 10.1016/j.conbuildmat.2013.08.038
|
[7] |
Dong B Q, Zhang J C, Wang Y S, et al. Evolutionary trace for early hydration of cement paste using electrical resistivity method. Constr Build Mater, 2016, 119: 16 doi: 10.1016/j.conbuildmat.2016.03.127
|
[8] |
孔祥明, 路振寶, 閆娟, 等. 三乙醇胺對水化過程中水泥漿體液相離子濃度的影響. 硅酸鹽學報, 2013, 41(7):981 doi: 10.7521/j.issn.0454-5648.2013.07.16
Kong X M, Lu Z B, Yan J, et al. Influence of triethanolamine on elemental concentrations in aqueous phase of hydrating cement pastes. J Chin Ceram Soc, 2013, 41(7): 981 doi: 10.7521/j.issn.0454-5648.2013.07.16
|
[9] |
錢如勝, 張云升, 張宇, 等. 水泥–粉煤灰體系早齡期液相離子濃度與電導率的關系. 材料導報, 2018, 32(12):2066 doi: 10.11896/j.issn.1005-023X.2018.12.024
Qian R S, Zhang Y S, Zhang Y, et al. Relationships between liquid ion concentration and electrical conductivity during the early hydration of cement–fly ash system. Mater Rev, 2018, 32(12): 2066 doi: 10.11896/j.issn.1005-023X.2018.12.024
|
[10] |
廖宜順, 沈晴, 徐鵬飛, 等. 粉煤灰對水泥基材料水化過程電阻率的影響研究. 材料導報, 2019, 33(8):1335 doi: 10.11896/cldb.17110298
Liao Y S, Shen Q, Xu P F, et al. Effect of fly ash on the electrical resistivity of cement-based materials during the hydration process. Mater Rep, 2019, 33(8): 1335 doi: 10.11896/cldb.17110298
|
[11] |
Muazu B S, Wei X S, Wang L. Hydration process and crack tendency of concrete based on resistivity and restrained shrinkage crack. J Wuhan Univ Technol -Mat Sci Edit, 2016, 31(5): 1026 doi: 10.1007/s11595-016-1485-6
|
[12] |
陳偉, Brouwers H J H, 水中和. 水泥漿體液相離子濃度模擬. 武漢理工大學學報, 2010, 32(11):1 doi: 10.3963/j.issn.1671-4431.2010.11.001
Chen W, Brouwers H J H, Shui Z H. Modeling ion concentrations in pore solution of hydrated cement paste. J Wuhan Univ Technol, 2010, 32(11): 1 doi: 10.3963/j.issn.1671-4431.2010.11.001
|
[13] |
何麗, 陳慶, 蔣正武. 基于水化進程的硬化水泥漿體電導率動態計算模型. 建筑材料學報, 2022, 25(1):1 doi: 10.3969/j.issn.1007-9629.2022.01.001
He L, Chen Q, Jiang Z W. Hydration based dynamic calculation model for electric conductivity of hardened cement paste. J Build Mater, 2022, 25(1): 1 doi: 10.3969/j.issn.1007-9629.2022.01.001
|
[14] |
楊南如. 非傳統膠凝材料化學. 武漢: 武漢理工大學出版社, 2018
Yang N R. Non-Traditional Cementitious Materials Chemistry. Wuhan: Wuhan University of Technology Press, 2018
|
[15] |
錢覺時, 余金城, 孫化強, 等. 鈣礬石的形成與作用. 硅酸鹽學報, 2017, 45(11):1569 doi: 10.14062/j.issn.0454-5648.2017.11.04
Qian J S, Yu J C, Sun H Q, et al. Formation and function of ettringite in cement hydrates. J Chin Ceram Soc, 2017, 45(11): 1569 doi: 10.14062/j.issn.0454-5648.2017.11.04
|
[16] |
李穎, 吳保華, 倪文, 等. 礦渣–鋼渣–石膏體系早期水化反應中的協同作用. 東北大學學報(自然科學版), 2020, 41(4):581 doi: 10.12068/j.issn.1005-3026.2020.04.022
Li Y, Wu B H, Ni W, et al. Synergies in early hydration reaction of slag-steel slag-gypsum system. J Northeast Univ (Nat Sci)
|
[17] |
劉新, 馮攀, 沈敘言, 等. 水泥水化產物—水化硅酸鈣(C–S–H)的研究進展. 材料導報, 2021, 35(9):9157 doi: 10.11896/cldb.20040204
Liu X, Feng P, Shen X Y, et al. Advances in the understanding of cement hydrate—Calcium silicate hydrate(C–S–H). Mater Rep, 2021, 35(9): 9157 doi: 10.11896/cldb.20040204
|
[18] |
Li Y J, Pan H, Li Z J. Ab initio metadynamics simulations on the formation of calcium silicate aqua complexes prior to the nuleation of calcium silicate hydrate. Cem Concr Res, 2022, 156: 106767 doi: 10.1016/j.cemconres.2022.106767
|
[19] |
姜關照, 吳愛祥, 王貽明. 堿激發水泥–磷渣固化性能及與含硫尾砂的相容性. 工程科學學報, 2020, 42(8):963
Jiang G Z, Wu A X, Wang Y M. Curing performance of alkali-activated cement–phosphorous slag and its compatibility with sulfur tailings. Chin J Eng, 2020, 42(8): 963
|
[20] |
吳愛祥, 姜關照, 蘭文濤, 等. 銅爐渣活性激發實驗研究及水化機理分析. 中南大學學報(自然科學版), 2017, 48(9):2498
Wu A X, Jiang G Z, Lan W T, et al. Experimental study on copper slag activity excitation and hydration mechanism analysis. J Central South Univ (Sci Technol)
|
[21] |
王茹, 劉科, 萬芹, 等. 含羥乙基纖維素醚對CSA水泥早期水化的影響. 建筑材料學報,https://kns.cnki.net/kcms/detail/31.1764.TU.20211012.1522.006.html
Wang R, Liu K, Wan Q, et al. Effect of cellulose ethers with hydroxyethyl group on early hydration of CSA cement. J Build Mater,https://kns.cnki.net/kcms/detail/31.1764.TU.20211012.1522.006.html
|
[22] |
潘曉燕, 張廣興, 張晏清, 等. 納米SiO2改性水泥土釘注漿體性能的研究. 建筑材料學報, 2017, 20(2):255 doi: 10.3969/j.issn.1007-9629.2017.02.017
Pan X Y, Zhang G X, Zhang Y Q, et al. Study on properties of nano-SiO2 blended cement pastes for grouting soil nailing. J Build Mater, 2017, 20(2): 255 doi: 10.3969/j.issn.1007-9629.2017.02.017
|
[23] |
Plusquellec G, Geiker M R, Lindg?rd J, et al. Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison. Cem Concr Res, 2017, 96: 13 doi: 10.1016/j.cemconres.2017.03.002
|
[24] |
王燕, 朱一民, 謝瑞琦, 等. 鈉長石的晶體化學基因特征及其可浮性預測. 金屬礦山, 2020(6):81 doi: 10.19614/j.cnki.jsks.202006012
Wang Y, Zhu Y M, Xie R Q, et al. Crystal chemical genes characteristics of albite and prediction of its floatability. Met Mine, 2020(6): 81 doi: 10.19614/j.cnki.jsks.202006012
|
[25] |
陸現彩, 尹琳, 趙連澤, 等. 常見層狀硅酸鹽礦物的表面特征. 硅酸鹽學報, 2003, 31(1):60 doi: 10.3321/j.issn:0454-5648.2003.01.013
Lu X C, Yin L, Zhao L Z, et al. Surface characteristics of general phyllosilicate minerals. J Chin Ceram Soc, 2003, 31(1): 60 doi: 10.3321/j.issn:0454-5648.2003.01.013
|
[26] |
陳煒一, 周予啟, 李嵩, 等. 水化熱抑制劑對水泥–粉煤灰膠凝材料水化和混凝土性能的影響. 硅酸鹽學報, 2021, 49(8):1609
Chen W Y, Zhou Y Q, Li S, et al. Impact of temperature rising inhibitor on hydration of cement–fly ash cementitious materials and performance of concrete. J Chin Ceram Soc, 2021, 49(8): 1609
|