<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LIU Juan-hong, AN Shu-hao, WU Ai-xiang, WANG Hong-jiang, ZHANG Yue-yue. Early hydration and liquid phase characteristics of solidified body of clinker-free superfine tailings[J]. Chinese Journal of Engineering, 2022, 44(12): 1999-2007. doi: 10.13374/j.issn2095-9389.2022.05.12.001
Citation: LIU Juan-hong, AN Shu-hao, WU Ai-xiang, WANG Hong-jiang, ZHANG Yue-yue. Early hydration and liquid phase characteristics of solidified body of clinker-free superfine tailings[J]. Chinese Journal of Engineering, 2022, 44(12): 1999-2007. doi: 10.13374/j.issn2095-9389.2022.05.12.001

Early hydration and liquid phase characteristics of solidified body of clinker-free superfine tailings

doi: 10.13374/j.issn2095-9389.2022.05.12.001
More Information
  • Corresponding author: E-mail: juanhong1966@hotmail.com
  • Received Date: 2022-05-11
    Available Online: 2022-07-10
  • Publish Date: 2022-12-01
  • To investigate the early hydration and consolidation mechanism of superfine metal tailings powder in the CaO–CaSO4–H2O system, a clinker-free consolidation material based on iron tailings powder was prepared by superfine grinding lime, gypsum, and iron tailings. From 3 min to 24 h, the liquid phase of the hydrated slurry was extracted by centrifugation and high-pressure extraction. The changes in ion concentration and conductivity were tested, and the relationship between them was analyzed. The relationship between the formation mechanism of early hydration products of a consolidated body and the change of liquid phase characteristics is studied combined with the hydration exothermic rate curve, field emission scanning electron microscope (SEM), X-ray diffraction analysis (XRD), thermogravimetry-differential thermal analysis (TG–DSC), and other test methods. The results show that lime, gypsum, and amorphous components, which are on the surface of iron tailings powder, dissolve rapidly within a few minutes after solid-liquid mixing. The concentration of each ion in the liquid phase rises sharply, reaching the peak or saturated state successively in 10–30 min, and then decreases rapidly. After 180 min, the decline rate slows down but continues to decline. The liquid conductivity has a very high positive correlation with the total concentration of Ca2+, OH, and SO42– ions; The first hydration exothermic peak of the consolidated material is concentrated within 0–15 min, which is mainly caused by the wetting and dissolution of soluble components in the consolidated material and the exothermic behavior of lime hydration; The starting and ending time of the second hydration exothermic behavior is 20–180 min, which is mainly caused by the phase change heat generated by the formation of hydration products. Increasing the grinding time significantly prolongs the termination time of the second exothermic behavior and increases its peak value; The phase analysis of hydration products showed that AFt characteristic peak and C–S–H endothermic peak could be seen in the slurry after hydration for 90 min. Research has proved that the amorphous SiO2 and Al2O3 on the surface of superfine iron tailings powder have the characteristics of rapid dissolution in alkaline solutions, and a hydration reaction can occur when lime and gypsum components are encountered. When the solubility product of hydration products is reached, hydration products AFt and C–S–H will be generated. The two hydration products are interspersed and cemented with each other, and the unhydrated iron tailings particles will be consolidated to form a hardened body. Prolonging the grinding time can effectively increase the system’s amorphous SiO2 and Al2O3 content and the proportion of superfine particles in iron tailings, thus improving the slurry hydration rate. While increasing the amount of the hydration product, the filling effect of the micro powder part is further increased, and the strength of the consolidated body is correspondingly improved.

     

  • loading
  • [1]
    王海軍, 王伊杰, 李文超. 全國礦產資源節約與綜合利用報告. 北京: 地質出版社, 2019

    Wang H J, Wang Y J, Li W C. Report of Mineral Resources Saving & Comprehensive Utilization in China. Beijing: Geological Publishing House, 2019
    [2]
    程海勇, 吳愛祥, 吳順川, 等. 金屬礦山固廢充填研究現狀與發展趨勢. 工程科學學報, 2022, 44(1):11

    Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11
    [3]
    劉倩影, 劉娟紅, 王洪江, 等. 細粒級全尾砂膏體充填材料性能調控研究. 金屬礦山, 2021(10):51 doi: 10.19614/j.cnki.jsks.202110008

    Liu Q Y, Liu J H, Wang H J, et al. Study on performance control of fine grained tailings paste filling material. Met Mine, 2021(10): 51 doi: 10.19614/j.cnki.jsks.202110008
    [4]
    劉娟紅, 周在波, 吳愛祥, 等. 低濃度拜耳赤泥充填材料制備及水化機理. 工程科學學報, 2020, 42(11):1457

    Liu J H, Zhou Z B, Wu A X, et al. Preparation and hydration mechanism of low concentration Bayer red mud filling materials. Chin J Eng, 2020, 42(11): 1457
    [5]
    Liu J H, Zhou Y C, Wu A X, et al. Reconstruction of broken Si–O–Si bonds in iron ore tailings (IOTs) in concrete. Int J Miner Metall Mater, 2019, 26(10): 1329 doi: 10.1007/s12613-019-1811-z
    [6]
    Sanish K B, Neithalath N, Santhanam M. Monitoring the evolution of material structure in cement pastes and concretes using electrical property measurements. Constr Build Mater, 2013, 49: 288 doi: 10.1016/j.conbuildmat.2013.08.038
    [7]
    Dong B Q, Zhang J C, Wang Y S, et al. Evolutionary trace for early hydration of cement paste using electrical resistivity method. Constr Build Mater, 2016, 119: 16 doi: 10.1016/j.conbuildmat.2016.03.127
    [8]
    孔祥明, 路振寶, 閆娟, 等. 三乙醇胺對水化過程中水泥漿體液相離子濃度的影響. 硅酸鹽學報, 2013, 41(7):981 doi: 10.7521/j.issn.0454-5648.2013.07.16

    Kong X M, Lu Z B, Yan J, et al. Influence of triethanolamine on elemental concentrations in aqueous phase of hydrating cement pastes. J Chin Ceram Soc, 2013, 41(7): 981 doi: 10.7521/j.issn.0454-5648.2013.07.16
    [9]
    錢如勝, 張云升, 張宇, 等. 水泥–粉煤灰體系早齡期液相離子濃度與電導率的關系. 材料導報, 2018, 32(12):2066 doi: 10.11896/j.issn.1005-023X.2018.12.024

    Qian R S, Zhang Y S, Zhang Y, et al. Relationships between liquid ion concentration and electrical conductivity during the early hydration of cement–fly ash system. Mater Rev, 2018, 32(12): 2066 doi: 10.11896/j.issn.1005-023X.2018.12.024
    [10]
    廖宜順, 沈晴, 徐鵬飛, 等. 粉煤灰對水泥基材料水化過程電阻率的影響研究. 材料導報, 2019, 33(8):1335 doi: 10.11896/cldb.17110298

    Liao Y S, Shen Q, Xu P F, et al. Effect of fly ash on the electrical resistivity of cement-based materials during the hydration process. Mater Rep, 2019, 33(8): 1335 doi: 10.11896/cldb.17110298
    [11]
    Muazu B S, Wei X S, Wang L. Hydration process and crack tendency of concrete based on resistivity and restrained shrinkage crack. J Wuhan Univ Technol -Mat Sci Edit, 2016, 31(5): 1026 doi: 10.1007/s11595-016-1485-6
    [12]
    陳偉, Brouwers H J H, 水中和. 水泥漿體液相離子濃度模擬. 武漢理工大學學報, 2010, 32(11):1 doi: 10.3963/j.issn.1671-4431.2010.11.001

    Chen W, Brouwers H J H, Shui Z H. Modeling ion concentrations in pore solution of hydrated cement paste. J Wuhan Univ Technol, 2010, 32(11): 1 doi: 10.3963/j.issn.1671-4431.2010.11.001
    [13]
    何麗, 陳慶, 蔣正武. 基于水化進程的硬化水泥漿體電導率動態計算模型. 建筑材料學報, 2022, 25(1):1 doi: 10.3969/j.issn.1007-9629.2022.01.001

    He L, Chen Q, Jiang Z W. Hydration based dynamic calculation model for electric conductivity of hardened cement paste. J Build Mater, 2022, 25(1): 1 doi: 10.3969/j.issn.1007-9629.2022.01.001
    [14]
    楊南如. 非傳統膠凝材料化學. 武漢: 武漢理工大學出版社, 2018

    Yang N R. Non-Traditional Cementitious Materials Chemistry. Wuhan: Wuhan University of Technology Press, 2018
    [15]
    錢覺時, 余金城, 孫化強, 等. 鈣礬石的形成與作用. 硅酸鹽學報, 2017, 45(11):1569 doi: 10.14062/j.issn.0454-5648.2017.11.04

    Qian J S, Yu J C, Sun H Q, et al. Formation and function of ettringite in cement hydrates. J Chin Ceram Soc, 2017, 45(11): 1569 doi: 10.14062/j.issn.0454-5648.2017.11.04
    [16]
    李穎, 吳保華, 倪文, 等. 礦渣–鋼渣–石膏體系早期水化反應中的協同作用. 東北大學學報(自然科學版), 2020, 41(4):581 doi: 10.12068/j.issn.1005-3026.2020.04.022

    Li Y, Wu B H, Ni W, et al. Synergies in early hydration reaction of slag-steel slag-gypsum system. J Northeast Univ (Nat Sci), 2020, 41(4): 581 doi: 10.12068/j.issn.1005-3026.2020.04.022
    [17]
    劉新, 馮攀, 沈敘言, 等. 水泥水化產物—水化硅酸鈣(C–S–H)的研究進展. 材料導報, 2021, 35(9):9157 doi: 10.11896/cldb.20040204

    Liu X, Feng P, Shen X Y, et al. Advances in the understanding of cement hydrate—Calcium silicate hydrate(C–S–H). Mater Rep, 2021, 35(9): 9157 doi: 10.11896/cldb.20040204
    [18]
    Li Y J, Pan H, Li Z J. Ab initio metadynamics simulations on the formation of calcium silicate aqua complexes prior to the nuleation of calcium silicate hydrate. Cem Concr Res, 2022, 156: 106767 doi: 10.1016/j.cemconres.2022.106767
    [19]
    姜關照, 吳愛祥, 王貽明. 堿激發水泥–磷渣固化性能及與含硫尾砂的相容性. 工程科學學報, 2020, 42(8):963

    Jiang G Z, Wu A X, Wang Y M. Curing performance of alkali-activated cement–phosphorous slag and its compatibility with sulfur tailings. Chin J Eng, 2020, 42(8): 963
    [20]
    吳愛祥, 姜關照, 蘭文濤, 等. 銅爐渣活性激發實驗研究及水化機理分析. 中南大學學報(自然科學版), 2017, 48(9):2498

    Wu A X, Jiang G Z, Lan W T, et al. Experimental study on copper slag activity excitation and hydration mechanism analysis. J Central South Univ (Sci Technol), 2017, 48(9): 2498
    [21]
    王茹, 劉科, 萬芹, 等. 含羥乙基纖維素醚對CSA水泥早期水化的影響. 建筑材料學報,https://kns.cnki.net/kcms/detail/31.1764.TU.20211012.1522.006.html

    Wang R, Liu K, Wan Q, et al. Effect of cellulose ethers with hydroxyethyl group on early hydration of CSA cement. J Build Mater,https://kns.cnki.net/kcms/detail/31.1764.TU.20211012.1522.006.html
    [22]
    潘曉燕, 張廣興, 張晏清, 等. 納米SiO2改性水泥土釘注漿體性能的研究. 建筑材料學報, 2017, 20(2):255 doi: 10.3969/j.issn.1007-9629.2017.02.017

    Pan X Y, Zhang G X, Zhang Y Q, et al. Study on properties of nano-SiO2 blended cement pastes for grouting soil nailing. J Build Mater, 2017, 20(2): 255 doi: 10.3969/j.issn.1007-9629.2017.02.017
    [23]
    Plusquellec G, Geiker M R, Lindg?rd J, et al. Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison. Cem Concr Res, 2017, 96: 13 doi: 10.1016/j.cemconres.2017.03.002
    [24]
    王燕, 朱一民, 謝瑞琦, 等. 鈉長石的晶體化學基因特征及其可浮性預測. 金屬礦山, 2020(6):81 doi: 10.19614/j.cnki.jsks.202006012

    Wang Y, Zhu Y M, Xie R Q, et al. Crystal chemical genes characteristics of albite and prediction of its floatability. Met Mine, 2020(6): 81 doi: 10.19614/j.cnki.jsks.202006012
    [25]
    陸現彩, 尹琳, 趙連澤, 等. 常見層狀硅酸鹽礦物的表面特征. 硅酸鹽學報, 2003, 31(1):60 doi: 10.3321/j.issn:0454-5648.2003.01.013

    Lu X C, Yin L, Zhao L Z, et al. Surface characteristics of general phyllosilicate minerals. J Chin Ceram Soc, 2003, 31(1): 60 doi: 10.3321/j.issn:0454-5648.2003.01.013
    [26]
    陳煒一, 周予啟, 李嵩, 等. 水化熱抑制劑對水泥–粉煤灰膠凝材料水化和混凝土性能的影響. 硅酸鹽學報, 2021, 49(8):1609

    Chen W Y, Zhou Y Q, Li S, et al. Impact of temperature rising inhibitor on hydration of cement–fly ash cementitious materials and performance of concrete. J Chin Ceram Soc, 2021, 49(8): 1609
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (490) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频