Citation: | PAN Ji-liang, GUO Qi-feng, REN Fen-hua, ZHANG Ying, WU Xu. Evolution mechanism of the physical properties and thermal conductivity of thermal shock granite under chemical immersion[J]. Chinese Journal of Engineering, 2022, 44(10): 1755-1766. doi: 10.13374/j.issn2095-9389.2022.04.24.001 |
[1] |
蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43
Cai M F, Dor J. Chen X S, et al. Development strategy for co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43
|
[2] |
藺文靜, 王貴玲, 邵景力, 等. 我國干熱巖資源分布及勘探: 進展與啟示. 地質學報, 2021, 95(5):1366 doi: 10.3969/j.issn.0001-5717.2021.05.004
Lin W J, Wang G L, Shao J L, et al. Distribution and exploration of hot dry rock resources in China: Progress and inspiration. Acta Geol Sin, 2021, 95(5): 1366 doi: 10.3969/j.issn.0001-5717.2021.05.004
|
[3] |
Guo Q F, Xi X, Yang S, et al. Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines. Int J Miner Metall Mater, 2022, 29(4): 626 doi: 10.1007/s12613-021-2374-3
|
[4] |
Kelkar S, WoldeGabriel G, Rehfeldt K. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA. Geothermics, 2016, 63: 5 doi: 10.1016/j.geothermics.2015.08.008
|
[5] |
張森琦, 文冬光, 許天福, 等. 美國干熱巖“地熱能前沿瞭望臺研究計劃”與中美典型EGS場地勘查現狀對比. 地學前緣, 2019, 26(2):321 doi: 10.13745/j.esf.sf.2019.2.9
Zhang S Q, Wen D G, Xu T F, et al. The U. S. Frontier Observatory for Research in Geothermal Energy project and comparison of typical EGS site exploration status in China and U. S. Earth Sci Front, 2019, 26(2): 321 doi: 10.13745/j.esf.sf.2019.2.9
|
[6] |
Wu X G, Huang Z W, Cheng Z, et al. Effects of cyclic heating and LN2-cooling on the physical and mechanical properties of granite. Appl Therm Eng, 2019, 156: 99 doi: 10.1016/j.applthermaleng.2019.04.046
|
[7] |
Sha S, Rong G, Chen Z H, et al. Experimental evaluation of physical and mechanical properties of geothermal reservoir rock after different cooling treatments. Rock Mech Rock Eng, 2020, 53(11): 4967 doi: 10.1007/s00603-020-02200-5
|
[8] |
Luo J, Zhu Y Q, Guo Q H, et al. Chemical stimulation on the hydraulic properties of artificially fractured granite for enhanced geothermal system. Energy, 2018, 142: 754 doi: 10.1016/j.energy.2017.10.086
|
[9] |
Norbeck J H, McClure M W, Horne R N. Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation. Geothermics, 2018, 74: 135 doi: 10.1016/j.geothermics.2018.03.003
|
[10] |
Liu H J, Shi Y K, Fang Z M, et al. Seepage characteristics of thermally and chemically treated Mesozoic granite from geothermal region of Liaodong Peninsula. Environ Earth Sci, 2021, 80(17): 1
|
[11] |
Zimmermann G, Bl?cher G, Reinicke A, et al. Rock specific hydraulic fracturing and matrix acidizing to enhance a geothermal system-Concepts and field results. Tectonophysics, 2011, 503(1-2): 146 doi: 10.1016/j.tecto.2010.09.026
|
[12] |
Portier S, Vuataz F D, Nami P, et al. Chemical stimulation techniques for geothermal wells: Experiments on the three-well EGS system at Soultz-sous-Forêts, France. Geothermics, 2009, 38(4): 349 doi: 10.1016/j.geothermics.2009.07.001
|
[13] |
Esteban L, Pimienta L, Sarout J, et al. Study cases of thermal conductivity prediction from P-wave velocity and porosity. Geothermics, 2015, 53: 255 doi: 10.1016/j.geothermics.2014.06.003
|
[14] |
Liu S, Xu J Y. An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Eng Geol, 2015, 185: 63 doi: 10.1016/j.enggeo.2014.11.013
|
[15] |
Hu J J, Xie H P, Sun Q, et al. Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action. Int J Min Sci Technol, 2021, 31(5): 843 doi: 10.1016/j.ijmst.2021.07.010
|
[16] |
吳星輝, 蔡美峰, 任奮華, 等. 不同熱處理作用下花崗巖縱波波速和導熱能力的演化規律分析. 巖石力學與工程學報, 2022, 41(3):457 doi: 10.13722/j.cnki.jrme.2021.0532
Wu X H, Cai M F, Ren F H, et al. Evolutions of P-wave velocity and thermal conductivity of granite under different thermal treatments. Chin J Rock Mech Eng, 2022, 41(3): 457 doi: 10.13722/j.cnki.jrme.2021.0532
|
[17] |
Pan J L, Cai M F, Li P, et al. A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression. J Central South Univ, 2022, 29(2): 486 doi: 10.1007/s11771-022-4949-1
|
[18] |
Zhang W Q, Sun Q, Hao S Q, et al. Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng, 2016, 98: 1297 doi: 10.1016/j.applthermaleng.2016.01.010
|
[19] |
Wang F, Konietzky H. Thermo-mechanical properties of granite at elevated temperatures and numerical simulation of thermal cracking. Rock Mech Rock Eng, 2019, 52(10): 3737 doi: 10.1007/s00603-019-01837-1
|
[20] |
Farquharson J I, Kushnir A R L, Wild B, et al. Physical property evolution of granite during experimental chemical stimulation. Geotherm Energy, 2020, 8(1): 14 doi: 10.1186/s40517-020-00168-7
|
[21] |
Huang Z, Zeng W, Gu Q X, et al. Investigations of variations in physical and mechanical properties of granite, sandstone, and marble after temperature and acid solution treatments. Constr Build Mater, 2021, 307: 124943 doi: 10.1016/j.conbuildmat.2021.124943
|
[22] |
李哲, 陳有亮, 王蘇然, 等. 化學溶蝕及高溫作用下砂巖力學特性的試驗研究. 上海理工大學學報, 2019, 41(3):244 doi: 10.13255/j.cnki.jusst.2019.03.006
Li Z, Chen Y L, Wang S R, et al. Experimental research on mechanical properties of sandstone after chemical corrosion and high temperature exposure. J Univ Shanghai Sci Technol, 2019, 41(3): 244 doi: 10.13255/j.cnki.jusst.2019.03.006
|
[23] |
李哲, 陳有亮, 王蘇然, 等. 經化學溶蝕并高低溫作用后砂巖的力學特性試驗研究. 工業建筑, 2018, 48(8):103 doi: 10.13204/j.gyjz201808018
Li Z, Chen Y L, Wang S R, et al. Experimental research on mechanical properties of sandstone in chemical corrosion under high or low temperature action. Ind Constr, 2018, 48(8): 103 doi: 10.13204/j.gyjz201808018
|
[24] |
劉明亮, 莊亞芹, 周超, 等. 化學刺激技術在增強型地熱系統中的應用: 理論、實踐與展望. 地球科學與環境學報, 2016, 38(2):267 doi: 10.3969/j.issn.1672-6561.2016.02.014
Liu M L, Zhuang Y Q, Zhou C, et al. Application of chemical stimulation technology in enhanced geothermal system: Theory, practice and expectation. J Earth Sci Environ, 2016, 38(2): 267 doi: 10.3969/j.issn.1672-6561.2016.02.014
|
[25] |
張衛強. 巖石熱損傷微觀機制與宏觀物理力學性質演變特征研究— —以典型巖石為例[學位論文]. 徐州: 中國礦業大學, 2017
Zhang W Q. Study on the Microscopic Mechanism of Rock Thermal Damage and the Evolution Characteristics of Macroscopic Physical and Mechanical Properties—Taking Typical Rock as an Example[Dissertation]. Xuzhou: China University of Mining and Technology, 2017
|
[26] |
Chen S W, Yang C H, Wang G B. Evolution of thermal damage and permeability of Beishan granite. Appl Therm Eng, 2017, 110: 1533 doi: 10.1016/j.applthermaleng.2016.09.075
|
[27] |
Zhao X G, Wang J, Chen F, et al. Experimental investigations on the thermal conductivity characteristics of Beishan granitic rocks for China’s HLW disposal. Tectonophysics, 2016, 683: 124 doi: 10.1016/j.tecto.2016.06.021
|
[28] |
李楊, 張超, 宋衛東, 等. 海底金礦巖石彈性縱波與孔隙率特性. 中國礦業大學學報, 2021, 50(2):239 doi: 10.13247/j.cnki.jcumt.001224
Li Y, Zhang C, Song W D, et al. Elastic longitudinal wave and porosity of subsea gold deposits. J China Univ Min Technol, 2021, 50(2): 239 doi: 10.13247/j.cnki.jcumt.001224
|
[29] |
Li S, Ni G H, Wang H, et al. Effects of acid solution of different components on the pore structure and mechanical properties of coal. Adv Powder Technol, 2020, 31(4): 1736 doi: 10.1016/j.apt.2020.02.009
|
[30] |
褚夫蛟, 劉敦文, 陶明, 等. 基于核磁共振的不同含水狀態砂巖動態損傷規律. 工程科學學報, 2018, 40(2):144
Chu F J, Liu D W, Tao M, et al. Dynamic damage laws of sandstone under different water bearing conditions based on nuclear magnetic resonance. Chin J Eng, 2018, 40(2): 144
|