<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
XUE You, YANG Tao, WANG Hong-yang, WANG En-hui, ZHOU Guo-Zhi, HOU Xin-mei. Construction of a high-efficiency piezoelectric nanogenerator based on in situ polarization of PVDF nanofiber films by electrospinning[J]. Chinese Journal of Engineering, 2023, 45(7): 1156-1164. doi: 10.13374/j.issn2095-9389.2022.04.14.001
Citation: XUE You, YANG Tao, WANG Hong-yang, WANG En-hui, ZHOU Guo-Zhi, HOU Xin-mei. Construction of a high-efficiency piezoelectric nanogenerator based on in situ polarization of PVDF nanofiber films by electrospinning[J]. Chinese Journal of Engineering, 2023, 45(7): 1156-1164. doi: 10.13374/j.issn2095-9389.2022.04.14.001

Construction of a high-efficiency piezoelectric nanogenerator based on in situ polarization of PVDF nanofiber films by electrospinning

doi: 10.13374/j.issn2095-9389.2022.04.14.001
More Information
  • Corresponding author: E-mail: yangtaoustb@ustb.edu.cn
  • Received Date: 2022-04-14
    Available Online: 2022-06-02
  • Publish Date: 2023-07-25
  • Because of the global fossil energy crisis and environmental pollution problems, the efficient use of green, renewable, and clean energy has become a major trend. Mechanical energy is considered an ideal alternative energy source because of its abundance, accessibility, and non-polluting characteristics. A piezoelectric nanogenerator (PENG) can convert environmental mechanical energy into electrical energy to power electronic devices. However, conventional piezoelectric materials must induce dipole alignment by electrical polarization to obtain piezoelectric properties, which substantially increases the cost and energy consumption of device preparation. Meanwhile, depolarization occurs when the external electric field is removed, which severely affects the performance of the piezoelectric material. In this study, PVDF nanofiber film is prepared using the electrospinning method. The PVDF dipole is rearranged to achieve in situ polarization by a strong electric field and stretching force generated by the electrospinning process. The PVDF nanofiber film process has a high electroactive β-phase content of 78.7%, which is the main contributor to the piezoelectric properties. The PENG constructed based on this film achieves direct conversion of mechanical energy to electrical energy, greatly improving energy use. The open-circuit output voltage of the thin film PENG prepared based on the electrostatic spinning method is 1.6 V, and the short-circuit output current is 0.14 μA, which are 4.5- and 2.6-fold higher than those prepared using the spin-coating method, respectively. The PVDF–PENG can charge a 1-μF capacitor to 2 V through a bridge rectifier after 60 s of human finger tapping. The power density of the PVDF–PENG is analyzed by measuring the electrical parameters at both ends of the resistor. The maximum output power is 0.03 μW at an applied load of 200 MΩ. More electrical energy can be obtained based on the PVDF–PENG, which further illustrates its possibilities and reliability in practical applications. Further, the PVDF–PENG maintains approximately 100% output capacity after 2000 consecutive cycles of compression, verifying its long-term stable service capability. Finally, the energy collected from the mechanical energy of human motion by the PVDF–PENG is explored to drive low-power consumer electronics. Six commercial LEDs are lit by using a large PENG without using any storage device. In addition, a bridge rectifier is used to charge a 2.2-μF capacitor, which successfully lights up a commercial electronic watch.

     

  • loading
  • [1]
    Lu L J, Ding W Q, Liu J Q, et al. Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 2020, 78: 105251 doi: 10.1016/j.nanoen.2020.105251
    [2]
    Mokhtari F, Shamshirsaz M, Latifi M, et al. Nanofibers-based piezoelectric energy harvester for self-powered wearable technologies. Polymers, 2020, 12(11): 2697 doi: 10.3390/polym12112697
    [3]
    Tuluk A, Mahon T, van der Zwaag S, et al. Estimating the true piezoelectric properties of BiFeO3 from measurements on BiFeO3-PVDF terpolymer composites. J Alloys Compd, 2021, 868: 159186 doi: 10.1016/j.jallcom.2021.159186
    [4]
    Zhao Q Y, Yang L, Chen K N, et al. Flexible textured MnO2 nanorods/ PVDF hybrid films with superior piezoelectric performance for energy harvesting application. Compos Sci Technol, 2020, 199: 108330 doi: 10.1016/j.compscitech.2020.108330
    [5]
    Zhou L L, Yang T, Zhu L P, et al. Piezoelectric nanogenerators with high performance against harsh conditions based on tunable N doped 4H-SiC nanowire arrays. Nano Energy, 2021, 83: 105826 doi: 10.1016/j.nanoen.2021.105826
    [6]
    Maity K, Garain S, Henkel K, et al. Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive piezoelectric sensor. ACS Appl Polym Mater, 2020, 2(2): 862 doi: 10.1021/acsapm.9b00846
    [7]
    Mokhtari F, Spinks G M, Sayyar S, et al. Highly stretchable self‐powered wearable electrical energy generator and sensors. Adv Mater Technol, 2020, 6(2): 2000841
    [8]
    Su Y J, Chen C X, Pan H, et al. Muscle fibers inspired high‐performance piezoelectric textiles for wearable physiological monitoring. Adv Funct Mater, 2021, 31(19): 202010962
    [9]
    武偉, 王恩會, 楊濤, 等. 自支撐二維Ti3C2Tx(MXene)薄膜電化學性能. 工程科學學報, 2021, 43(6):808

    Wu W, Wang E H, Yang T, et al. Electrochemical performance of self-assembled two-dimensional Ti3C2Tx(MXene) thin films. Chin J Eng, 2021, 43(6): 808
    [10]
    Martins P, Lopes A C, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog Polym Sci, 2014, 39(4): 683 doi: 10.1016/j.progpolymsci.2013.07.006
    [11]
    Gregorio R J, Cestari M. Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci B Polym Phys, 1994, 32(5): 859 doi: 10.1002/polb.1994.090320509
    [12]
    Sencadas V, Gregorio R, Lanceros-Méndez S. α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci Part B, 2009, 48(3): 514 doi: 10.1080/00222340902837527
    [13]
    Gradys A, Sajkiewicz P, Adamovsky S, et al. Crystallization of poly(vinylidene fluoride) during ultra-fast cooling. Thermochimica Acta, 2007, 461(1-2): 153 doi: 10.1016/j.tca.2007.05.023
    [14]
    Mohajir B E, Heymans N. Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer, 2001, 42(13): 5661
    [15]
    Shepelin N A, Glushenkov A M, Lussini V C, et al. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ Sci, 2019, 12(4): 1143 doi: 10.1039/C8EE03006E
    [16]
    Wu Y, Hsu S L, Honeker C, et al. The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B, 2012, 116(24): 7379 doi: 10.1021/jp3043494
    [17]
    Martins P, Caparros C, Gon?alves R, et al. Role of nanoparticle surface charge on the nucleation of the electroactive β-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J Phys Chem C, 2012, 116(29): 15790 doi: 10.1021/jp3038768
    [18]
    Bouhamed A, Qin B Y, B?hm B, et al. A hybrid piezoelectric composite flexible film based on PVDF-HFP for boosting power generation. Compos Sci Technol, 2021, 208: 108769 doi: 10.1016/j.compscitech.2021.108769
    [19]
    Ongun M Z, Oguzlar S, Doluel E C, et al. Enhancement of piezoelectric energy-harvesting capacity of electrospun β-PVDF nanogenerators by adding GO and rGO. J Mater Sci Mater Electron, 2020, 31(3): 1960 doi: 10.1007/s10854-019-02715-w
    [20]
    王瑜東, 楊凱, 張明杰, 等. 靜電紡絲法制備空心鈦酸鋰材料. 工程科學學報, 2019, 41(1):111

    Wang Y D, Yang K, Zhang M J, et al. Fabrication of hollow lithium titanate material by electrospinning. Chin J Eng, 2019, 41(1): 111
    [21]
    Yang J, Zhang Y H, Li Y N, et al. Piezoelectric nanogenerators based on graphene oxide/PVDF electrospun nanofiber with enhanced performances by In-situ reduction. Mater Today Commun, 2021, 26: 101629 doi: 10.1016/j.mtcomm.2020.101629
    [22]
    Zheng J F, He A H, Li J X, et al. Polymorphism control of poly(vinylidene fluoride) through electrospinning. Macromol Rapid Commun, 2007, 28(22): 2159 doi: 10.1002/marc.200700544
    [23]
    Wang S, Shao H Q, Liu Y, et al. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Compos Sci Technol, 2021, 202: 108600 doi: 10.1016/j.compscitech.2020.108600
    [24]
    陳靜, 馮宇, 趙禎祥, 等. 靜電紡絲技術在固體氧化物燃料電池中的應用. 硅酸鹽學報, 2021, 49(9):1861

    Chen J, Feng Y, Zhao Z X, et al. Application of electrospinning technology in solid oxide fuel cell. J Chin Ceram Soc, 2021, 49(9): 1861
    [25]
    He Z C, Rault F, Lewandowski M, et al. Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers, 2021, 13(2): 174 doi: 10.3390/polym13020174
    [26]
    Edmondson D, Cooper A, Jana S, et al. Centrifugal electrospinning of highly aligned polymer nanofibers over a large area. J Mater Chem, 2012, 22(35): 18646 doi: 10.1039/c2jm33877g
    [27]
    Chen H, Zhou L, Fang Z, et al. Piezoelectric nanogenerator based on In situ growth all-inorganic CsPbBr3 perovskite nanocrystals in PVDF fibers with long-term stability. Adv Funct Mater, 2021, 31(19): 2011073 doi: 10.1002/adfm.202011073
    [28]
    Mondal S, Paul T, Maiti S M, et al. Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF. Nano Energy, 2020, 74: 104870 doi: 10.1016/j.nanoen.2020.104870
    [29]
    Koka A, Zhou Z, Sodano H A. Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ Sci, 2014, 7(1): 288 doi: 10.1039/C3EE42540A
    [30]
    Priya S. Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram, 2007, 19(1): 167 doi: 10.1007/s10832-007-9043-4
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)

    Article views (452) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频