Citation: | XUE You, YANG Tao, WANG Hong-yang, WANG En-hui, ZHOU Guo-Zhi, HOU Xin-mei. Construction of a high-efficiency piezoelectric nanogenerator based on in situ polarization of PVDF nanofiber films by electrospinning[J]. Chinese Journal of Engineering, 2023, 45(7): 1156-1164. doi: 10.13374/j.issn2095-9389.2022.04.14.001 |
[1] |
Lu L J, Ding W Q, Liu J Q, et al. Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 2020, 78: 105251 doi: 10.1016/j.nanoen.2020.105251
|
[2] |
Mokhtari F, Shamshirsaz M, Latifi M, et al. Nanofibers-based piezoelectric energy harvester for self-powered wearable technologies. Polymers, 2020, 12(11): 2697 doi: 10.3390/polym12112697
|
[3] |
Tuluk A, Mahon T, van der Zwaag S, et al. Estimating the true piezoelectric properties of BiFeO3 from measurements on BiFeO3-PVDF terpolymer composites. J Alloys Compd, 2021, 868: 159186 doi: 10.1016/j.jallcom.2021.159186
|
[4] |
Zhao Q Y, Yang L, Chen K N, et al. Flexible textured MnO2 nanorods/ PVDF hybrid films with superior piezoelectric performance for energy harvesting application. Compos Sci Technol, 2020, 199: 108330 doi: 10.1016/j.compscitech.2020.108330
|
[5] |
Zhou L L, Yang T, Zhu L P, et al. Piezoelectric nanogenerators with high performance against harsh conditions based on tunable N doped 4H-SiC nanowire arrays. Nano Energy, 2021, 83: 105826 doi: 10.1016/j.nanoen.2021.105826
|
[6] |
Maity K, Garain S, Henkel K, et al. Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive piezoelectric sensor. ACS Appl Polym Mater, 2020, 2(2): 862 doi: 10.1021/acsapm.9b00846
|
[7] |
Mokhtari F, Spinks G M, Sayyar S, et al. Highly stretchable self‐powered wearable electrical energy generator and sensors. Adv Mater Technol, 2020, 6(2): 2000841
|
[8] |
Su Y J, Chen C X, Pan H, et al. Muscle fibers inspired high‐performance piezoelectric textiles for wearable physiological monitoring. Adv Funct Mater, 2021, 31(19): 202010962
|
[9] |
武偉, 王恩會, 楊濤, 等. 自支撐二維Ti3C2Tx(MXene)薄膜電化學性能. 工程科學學報, 2021, 43(6):808
Wu W, Wang E H, Yang T, et al. Electrochemical performance of self-assembled two-dimensional Ti3C2Tx(MXene) thin films. Chin J Eng, 2021, 43(6): 808
|
[10] |
Martins P, Lopes A C, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog Polym Sci, 2014, 39(4): 683 doi: 10.1016/j.progpolymsci.2013.07.006
|
[11] |
Gregorio R J, Cestari M. Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci B Polym Phys, 1994, 32(5): 859 doi: 10.1002/polb.1994.090320509
|
[12] |
Sencadas V, Gregorio R, Lanceros-Méndez S. α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci Part B, 2009, 48(3): 514 doi: 10.1080/00222340902837527
|
[13] |
Gradys A, Sajkiewicz P, Adamovsky S, et al. Crystallization of poly(vinylidene fluoride) during ultra-fast cooling. Thermochimica Acta, 2007, 461(1-2): 153 doi: 10.1016/j.tca.2007.05.023
|
[14] |
Mohajir B E, Heymans N. Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer, 2001, 42(13): 5661
|
[15] |
Shepelin N A, Glushenkov A M, Lussini V C, et al. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ Sci, 2019, 12(4): 1143 doi: 10.1039/C8EE03006E
|
[16] |
Wu Y, Hsu S L, Honeker C, et al. The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B, 2012, 116(24): 7379 doi: 10.1021/jp3043494
|
[17] |
Martins P, Caparros C, Gon?alves R, et al. Role of nanoparticle surface charge on the nucleation of the electroactive β-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J Phys Chem C, 2012, 116(29): 15790 doi: 10.1021/jp3038768
|
[18] |
Bouhamed A, Qin B Y, B?hm B, et al. A hybrid piezoelectric composite flexible film based on PVDF-HFP for boosting power generation. Compos Sci Technol, 2021, 208: 108769 doi: 10.1016/j.compscitech.2021.108769
|
[19] |
Ongun M Z, Oguzlar S, Doluel E C, et al. Enhancement of piezoelectric energy-harvesting capacity of electrospun β-PVDF nanogenerators by adding GO and rGO. J Mater Sci Mater Electron, 2020, 31(3): 1960 doi: 10.1007/s10854-019-02715-w
|
[20] |
王瑜東, 楊凱, 張明杰, 等. 靜電紡絲法制備空心鈦酸鋰材料. 工程科學學報, 2019, 41(1):111
Wang Y D, Yang K, Zhang M J, et al. Fabrication of hollow lithium titanate material by electrospinning. Chin J Eng, 2019, 41(1): 111
|
[21] |
Yang J, Zhang Y H, Li Y N, et al. Piezoelectric nanogenerators based on graphene oxide/PVDF electrospun nanofiber with enhanced performances by In-situ reduction. Mater Today Commun, 2021, 26: 101629 doi: 10.1016/j.mtcomm.2020.101629
|
[22] |
Zheng J F, He A H, Li J X, et al. Polymorphism control of poly(vinylidene fluoride) through electrospinning. Macromol Rapid Commun, 2007, 28(22): 2159 doi: 10.1002/marc.200700544
|
[23] |
Wang S, Shao H Q, Liu Y, et al. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Compos Sci Technol, 2021, 202: 108600 doi: 10.1016/j.compscitech.2020.108600
|
[24] |
陳靜, 馮宇, 趙禎祥, 等. 靜電紡絲技術在固體氧化物燃料電池中的應用. 硅酸鹽學報, 2021, 49(9):1861
Chen J, Feng Y, Zhao Z X, et al. Application of electrospinning technology in solid oxide fuel cell. J Chin Ceram Soc, 2021, 49(9): 1861
|
[25] |
He Z C, Rault F, Lewandowski M, et al. Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the β phase and crystallinity enhancement. Polymers, 2021, 13(2): 174 doi: 10.3390/polym13020174
|
[26] |
Edmondson D, Cooper A, Jana S, et al. Centrifugal electrospinning of highly aligned polymer nanofibers over a large area. J Mater Chem, 2012, 22(35): 18646 doi: 10.1039/c2jm33877g
|
[27] |
Chen H, Zhou L, Fang Z, et al. Piezoelectric nanogenerator based on In situ growth all-inorganic CsPbBr3 perovskite nanocrystals in PVDF fibers with long-term stability. Adv Funct Mater, 2021, 31(19): 2011073 doi: 10.1002/adfm.202011073
|
[28] |
Mondal S, Paul T, Maiti S M, et al. Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF. Nano Energy, 2020, 74: 104870 doi: 10.1016/j.nanoen.2020.104870
|
[29] |
Koka A, Zhou Z, Sodano H A. Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ Sci, 2014, 7(1): 288 doi: 10.1039/C3EE42540A
|
[30] |
Priya S. Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram, 2007, 19(1): 167 doi: 10.1007/s10832-007-9043-4
|