<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 10
Sep.  2022
Turn off MathJax
Article Contents
LIU Zhi-qiang, CHEN Xiang-sheng, SONG Zhao-yang, CHENG Shou-ye. Development path and key technology analysis of shaft and tunnel construction in deep stratum with high temperature[J]. Chinese Journal of Engineering, 2022, 44(10): 1733-1745. doi: 10.13374/j.issn2095-9389.2022.04.08.004
Citation: LIU Zhi-qiang, CHEN Xiang-sheng, SONG Zhao-yang, CHENG Shou-ye. Development path and key technology analysis of shaft and tunnel construction in deep stratum with high temperature[J]. Chinese Journal of Engineering, 2022, 44(10): 1733-1745. doi: 10.13374/j.issn2095-9389.2022.04.08.004

Development path and key technology analysis of shaft and tunnel construction in deep stratum with high temperature

doi: 10.13374/j.issn2095-9389.2022.04.08.004
More Information
  • Corresponding author: E-mail: szhaoyang123@126.com
  • Received Date: 2022-04-08
    Available Online: 2022-05-17
  • Publish Date: 2022-10-25
  • The joint exploitation of deep mineral and geothermal resources strategy provides an effective way to realize the economic exploitation of “resources-thermal” and achieve a win-win situation. The technology for deep high-temperature stratum shaft and roadway construction is an important support and guarantee for the safe and efficient implementation of the “ore-thermal co-mining” strategy. The necessity and urgency of this deep “ore-thermal co-mining” strategy to the technical requirements of shaft and roadway construction are analyzed. Combined with the analysis of the status quo of mine construction technology, it is clear that the non-blasting rock breaking technology represented by mechanical rock breaking is an important direction in the development of deep shaft and roadway construction technology at present. Mechanical rock breaking technology is a technical approach to solve the existing problems in the process of drilling and blasting excavation, such as too many underground workers, complex working procedures, serious occupational injury, and environmental pollution. In the hard rock stratum, partial section roadheader equipment has low boring efficiency, large tool consumption, and high economic cost, whereas full-section boring machines used for shaft or roadway have advantages in detection, rock breaking, slag discharge, surrounding rock supporting, and other aspects. Therefore, the development direction of intelligent shaft and roadway construction is proposed. It analyzes the difficulties and challenges faced by shaft and roadway construction in the deep high-temperature stratum, such as precise formation exploration, formation reinforcement and water plugging, high ground temperature prevention and control, high ground stress prevention and control, deep shaft lifting, and manufacturing of shaft and roadway boring machines. Three priority development tasks are proposed: 1) a geological guarantee system for deep high-temperature strata shaft and roadway construction; 2) a construction mode and planning of shaft and roadway in deep high-temperature strata; 3) a complete set of technology and equipment for deep high-temperature stratum shaft and roadway construction. Eight basic theories and key technologies are summarized based on the three priority development tasks: in situ exploration and transparent reconstruction of stratum, suitability of shaft and roadway construction methods in the high-temperature stratum; non-blasting rock breaking in the high-temperature stratum; continuous lifting of deep shaft; modification of deep bad stratum and long-term stability control of surrounding rock; thermal damage treatment of deep shaft; intelligent perception of shaft and roadway equipment; intelligent control of shaft and roadway boring equipment. Based on the above content, the basic theory and technology research system of shaft and roadway construction in a deep high-temperature stratum is preliminarily constructed to provide a reference for deep resource clean mining and the large-scale geothermal clean energy development.

     

  • loading
  • [1]
    謝和平, 高峰, 鞠楊, 等. 深地科學領域的若干顛覆性技術構想和研究方向. 工程科學與技術, 2017, 49(1):1

    Xie H P, Gao F, Ju Y, et al. Novel idea and disruptive technologies for the exploration and research of deep earth. Adv Eng Sci, 2017, 49(1): 1
    [2]
    于學峰, 楊德平, 李大鵬, 等. 膠東焦家金礦帶3000m深部成礦特征及其地質意義. 巖石學報, 2019, 35(9):2893 doi: 10.18654/1000-0569/2019.09.18

    Yu X F, Yang D P, Li D P, et al. Mineralization characteristics and geological significance in 3000 m depth of Jiaojia gold metallogenic belt, Jiaodong Peninsula. Acta Petrol Sin, 2019, 35(9): 2893 doi: 10.18654/1000-0569/2019.09.18
    [3]
    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417

    Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417
    [4]
    譚杰, 劉志強, 宋朝陽, 等. 我國礦山豎井鑿井技術現狀與發展趨勢. 金屬礦山, 2021(5):13

    Tan J, Liu Z Q, Song Z Y, et al. Status and development trend of mine shaft sinking technique in China. Met Mine, 2021(5): 13
    [5]
    劉志強, 宋朝陽, 紀洪廣, 等. 深部礦產資源開采礦井建設模式及其關鍵技術. 煤炭學報, 2021, 46(3):826

    Liu Z Q, Song Z Y, Ji H G, et al. Construction mode and key technology of mining shaft engineering for deep mineral resources. J China Coal Soc, 2021, 46(3): 826
    [6]
    蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43

    Cai M F, Duo J, Chen X S, et al. Development strategy for co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43
    [7]
    吳昊駿, 紀洪廣, 龔敏, 等. 我國地下礦山鑿巖裝備應用現狀與鑿巖智能化發展方向. 金屬礦山, 2021(1):185

    Wu H J, Ji H G, Gong M, et al. Present application status of rock drilling equipment in underground mine and the development direction for intelligent rock drilling in China. Met Mine, 2021(1): 185
    [8]
    劉志強, 洪伯潛, 龍志陽. 礦井建設科研成就60年. 建井技術, 2017, 38(5):1

    Liu Z Q, Hong B Q, Long Z Y. 60 years science and research achievements of mine construction. Mine Constr Technol, 2017, 38(5): 1
    [9]
    Herrenknecht AG. Shaft boring machine (SBM) [EB/OL]. Herrenknecht AG (2015-06-14)[2022-04-08].https://www.herrenknecht.com/en/products/productdetail/shaft-boring-machine-sbm/
    [10]
    劉志強. 反井鉆機. 北京: 科學出版社, 2017

    Liu Z Q. Raise Boring Machine. Beijing: Science press, 2017
    [11]
    劉志強, 宋朝陽, 程守業, 等. 我國反井鉆機鉆井技術與裝備發展歷程及現狀. 煤炭科學技術, 2021, 49(1):32

    Liu Z Q, Song Z Y, Cheng S Y, et al. Development history and status quo of raise boring technologies and equipment in China. Coal Sci Technol, 2021, 49(1): 32
    [12]
    Maidl B, Schmid L, Ritz W, et al. Hardrock Tunnel Boring Machines. Berlin: John Wiley and Sons, 2008
    [13]
    劉志強. 豎井掘進機. 北京: 煤炭工業出版社, 2019

    Liu Z Q. Shaft Boring Machine. Beijing: China Coal Industry Publishing House, 2019
    [14]
    范京道, 封華, 宋朝陽, 等. 可可蓋煤礦全礦井機械破巖智能化建井關鍵技術與裝備. 煤炭學報, 2022, 47(1):499

    Fan J D, Feng H, Song Z Y, et al. Key technology and equipment of intelligent mine construction of whole mine mechanical rock breaking in Kekegai Coal Mine. J China Coal Soc, 2022, 47(1): 499
    [15]
    劉志強, 宋朝陽, 程守業, 等. 千米級豎井全斷面科學鉆進裝備與關鍵技術分析. 煤炭學報, 2020, 45(11):3645

    Liu Z Q, Song Z Y, Cheng S Y, et al. Equipment and key technologies for full-section scientifically drilling of kilometer-level vertical shafts. J China Coal Soc, 2020, 45(11): 3645
    [16]
    謝和平, 高明忠, 張茹, 等. 深部巖石原位“五保”取芯構想與研究進展. 巖石力學與工程學報, 2020, 39(5):865

    Xie H P, Gao M Z, Zhang R, et al. Study on concept and progress of in situ fidelity coring of deep rocks. Chin J Rock Mech Eng, 2020, 39(5): 865
    [17]
    彭蘇萍. 我國煤礦安全高效開采地質保障系統研究現狀及展望. 煤炭學報, 2020, 45(7):2331

    Peng S P. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining. J China Coal Soc, 2020, 45(7): 2331
    [18]
    Simser B P. Rockburst management in Canadian hard rock mines. J Rock Mech Geotech Eng, 2019, 11(5): 1036 doi: 10.1016/j.jrmge.2019.07.005
    [19]
    蔡美峰, 冀東, 郭奇峰. 基于地應力現場實測與開采擾動能量積聚理論的巖爆預測研究. 巖石力學與工程學報, 2013, 32(10):1973

    Cai M F, Ji D, Guo Q F. Study of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbance. Chin J Rock Mech Eng, 2013, 32(10): 1973
    [20]
    宋朝陽, 紀洪廣, 張月征, 等. 不同粒度弱膠結砂巖聲發射信號源與其臨界破壞前兆信息判識. 煤炭學報, 2020, 45(12):4028

    Song Z Y, Ji H G, Zhang Y Z, et al. Acoustic emission signal sources and critical failure precursors of weakly consolidated sandstone with different grain sizes. J China Coal Soc, 2020, 45(12): 4028
    [21]
    何滿潮. 深井提升動力學研究. 力學進展, 2021, 51(3):702 doi: 10.6052/1000-0992-21-032

    He M C. Research on deep shaft hoisting dynamics. Adv Mech, 2021, 51(3): 702 doi: 10.6052/1000-0992-21-032
    [22]
    Song Z Y, Ji H G, Liu Z Q, et al. Study on the critical stress threshold of weakly cemented sandstone damage based on the renormalization group method. Int J Coal Sci Technol, 2020, 7(4): 693 doi: 10.1007/s40789-020-00315-2
    [23]
    劉志強, 宋朝陽, 程守業, 等. 全斷面豎井掘進機鑿井圍巖分類指標體系與評價方法. 煤炭科學技術, 2022, 50(1):86

    Liu Z Q, Song Z Y, Cheng S Y, et al. Classification grading evaluation index system and evaluation method of surrounding rock for full section shaft boring machine. Coal Sci Technol, 2022, 50(1): 86
    [24]
    李超, 李濤, 荊國業, 等. 豎井掘進機撐靴井壁土體極限承載力研究. 巖土力學, 2020, 41(增刊1): 227

    Li C, Li T, Jing G Y, et al. Study on the ultimate bearing capacity of surrounding soil underlying gripper of shaft boring machine. Rock Soil Mech, 2020, 41(Suppl 1): 227
    [25]
    劉志強, 宋朝陽. 我國大直徑井筒機械破巖鉆井技術與裝備新進展. 建井技術, 2022, 43(1):1

    Liu Z Q, Song Z Y. The latest development of mechanical rock breaking drilling technology and equipment for large diameter shaft in China. Mine Constr Technol, 2022, 43(1): 1
    [26]
    孟繼慧, 夏萬求, 彭澤豹, 等. SBM施工風險分析及管控措施—以寧海抽水蓄能電站豎井工程為例. 建井技術, 2021, 42(6):1

    Meng J H, Xia W Q, Peng Z B, et al. Risk analysis and control measures of SBM construction-based on shaft engineering of Ninghai pumped-storage hydroplant as example. Mine Constr Technol, 2021, 42(6): 1
    [27]
    劉志強, 陳湘生, 蔡美峰, 等. 我國大直徑鉆井技術裝備發展的挑戰與思考. 中國工程科學, 2022, 24(2):132

    Liu Z Q, Chen X S, Cai M F, et al. Challenges and thoughts on the development of large-diameter drilling technology and equipment. Strateg Study CAE, 2022, 24(2): 132
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)

    Article views (444) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频