<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 10
Sep.  2022
Turn off MathJax
Article Contents
KANG Fang-chao, TANG Chun-an, LI Ying-chun, LI Tian-jiao, MEN Jin-long. Challenges and opportunities of enhanced geothermal systems: A review[J]. Chinese Journal of Engineering, 2022, 44(10): 1767-1777. doi: 10.13374/j.issn2095-9389.2022.04.07.004
Citation: KANG Fang-chao, TANG Chun-an, LI Ying-chun, LI Tian-jiao, MEN Jin-long. Challenges and opportunities of enhanced geothermal systems: A review[J]. Chinese Journal of Engineering, 2022, 44(10): 1767-1777. doi: 10.13374/j.issn2095-9389.2022.04.07.004

Challenges and opportunities of enhanced geothermal systems: A review

doi: 10.13374/j.issn2095-9389.2022.04.07.004
More Information
  • Corresponding author: E-mail: yingchun_li@dlut.edu.cn
  • Received Date: 2022-04-07
    Available Online: 2022-06-09
  • Publish Date: 2022-10-25
  • Exploiting geothermal resources, especially hot dry rock (HDR), is essential to reduce carbon emissions to build an acceptable energy structure. The enhanced geothermal system (EGS) for mining HDR has experienced more than 50 years since it was proposed in 1970, obtaining rich research results and construction experience. It is of great significance to review the EGS history, which includes discussing the project site selection and thermal storage stimulations, summarizing the reasons for the shutdown of demonstration projects, and indicating the key factors restricting EGS development. Based on this, the future development direction of EGS is clarified, which can help explore deep geothermal energy and construct associated demonstration projects in China. The overall development of EGS is divided into two stages, namely, the research and development stage before 2000 (a total of 14 EGS projects) and the demonstration and quasi-commercialization stage since 2000 with a rapid development speed (a total of 27 EGS projects). By the end of 2021, the cumulative number of EGS worldwide has increased to 41. However, the cumulative installed capacity of power generation only reaches 37.41 MW. EGS is still on the learning curve, resulting in a long way to go to realize the large-scale commercialization of HDR geothermal energy. The factors restricting the commercialization of EGS are the lack of policy support and capital investment, the limitations of technical difficulty, and the unpredictability of the geological condition of the thermal reservoir, which weakens EGS development and even causes its suspension or termination. Because of the complex geological environment of thermal reservoirs, the fracture network and associated reservoir quality induced by hydraulic stimulations are uncontrollable, causing the fractured quality of the thermal reservoir to be lower than its critical value. It results in numerous adverse problems in most EGS projects, including insufficient thermal reservoir volume, an unstable fracture network, associated heat exchange area, severe fluid loss, and induced unacceptable earthquakes. Thus, the fundamental reason for EGS’s inability to commercialize is that it is challenging to form a reproducible thermal reservoir stimulation model induced by the difference in thermal reservoir geological conditions and the dependence of the existing stimulation technologies on the in situ reservoir geological environment. Establishing the database of HDR and EGS plays an urgent role in EGS development by forming an accurate quantitative system of reservoir geological conditions to explore the relationship between geological conditions and reservoir reconstruction and then build a replicable thermal reservoir reconstruction technology. Focusing on new and demonstration stimulations for the thermal reservoir, such as the enhanced geothermal system based on caving technology (EGS-E), FORGE, and DEEPEGS projects, may provide an acceptable way to break through the dependence of thermal reservoir stimulation on in-situ geological conditions and form the “reproducible” deep-geothermal resource mining system to realize the large-scale commercialization of deep-geothermal resources.

     

  • loading
  • [1]
    李德威, 王焰新. 干熱巖地熱能研究與開發的若干重大問題. 地球科學, 2015, 40(11):1858

    Li D W, Wang Y X. Major issues of research and development of hot dry rock geothermal energy. Earth Sci, 2015, 40(11): 1858
    [2]
    Zhu J L, Hu K Y, Lu X L, et al. A review of geothermal energy resources, development, and applications in China: Current status and prospects. Energy, 2015, 93: 466 doi: 10.1016/j.energy.2015.08.098
    [3]
    Rybach L. Geothermal energy: Sustainability and the environment. Geothermics, 2003, 32(4-6): 463 doi: 10.1016/S0375-6505(03)00057-9
    [4]
    胡劍, 蘇正, 吳能友, 等. 增強型地熱系統熱流耦合水巖溫度場分析. 地球物理學進展, 2014, 29(3):1391 doi: 10.6038/pg20140354

    Hu J, Su Z, Wu N Y, et al. Analysis on temperature fields of thermal-hydraulic coupled fluid and rock in Enhanced Geothermal System. Prog Geophys, 2014, 29(3): 1391 doi: 10.6038/pg20140354
    [5]
    廖志杰, 萬天豐, 張振國. 增強型地熱系統: 潛力大、開發難. 地學前緣, 2015, 22(1):335

    Liao Z J, Wan T F, Zhang Z G. The enhanced geothermal system (EGS): Huge capacity and difficult exploitation. Earth Sci Front, 2015, 22(1): 335
    [6]
    許天福, 胡子旭, 李勝濤, 等. 增強型地熱系統: 國際研究進展與我國研究現狀. 地質學報, 2018, 92(9):1936 doi: 10.3969/j.issn.0001-5717.2018.09.012

    Xu T F, Hu Z X, Li S T, et al. Enhanced geothermal system: International progresses and research status of China. Acta Geol Sin, 2018, 92(9): 1936 doi: 10.3969/j.issn.0001-5717.2018.09.012
    [7]
    Lund J W, Boyd T L. Direct utilization of geothermal energy 2015 worldwide review. Geothermics, 2016, 60: 66 doi: 10.1016/j.geothermics.2015.11.004
    [8]
    Lund J W, Freeston D H, Boyd T L. Direct utilization of geothermal energy 2010 worldwide review. Geothermics, 2011, 40(3): 159 doi: 10.1016/j.geothermics.2011.07.004
    [9]
    Lund J W, Toth A N. Direct utilization of geothermal energy 2020 worldwide review. Geothermics, 2021, 90: 101915 doi: 10.1016/j.geothermics.2020.101915
    [10]
    王貴玲, 劉彥廣, 朱喜, 等. 中國地熱資源現狀及發展趨勢. 地學前緣, 2020, 27(1):1 doi: 10.13745/j.esf.2020.1.1

    Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China. Earth Sci Front, 2020, 27(1): 1 doi: 10.13745/j.esf.2020.1.1
    [11]
    王貴玲, 張薇, 梁繼運, 等. 中國地熱資源潛力評價. 地球學報, 2017, 38(4):449 doi: 10.3975/cagsb.2017.04.02

    Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China. Acta Geosci Sin, 2017, 38(4): 449 doi: 10.3975/cagsb.2017.04.02
    [12]
    汪集旸, 胡圣標, 龐忠和, 等. 中國大陸干熱巖地熱資源潛力評估. 科技導報, 2012, 30(32):25 doi: 10.3981/j.issn.1000-7857.2012.32.002

    Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China. Sci Technol Rev, 2012, 30(32): 25 doi: 10.3981/j.issn.1000-7857.2012.32.002
    [13]
    Kruger P, Otte C. Geothermal Energy: Resources, Production, Stimulation. Stanford: Stanford University Press, 1973
    [14]
    Bertani R. Geothermal power generation in the world 2010—2014 update report. Geothermics, 2016, 60: 31 doi: 10.1016/j.geothermics.2015.11.003
    [15]
    Whetten J T, Dennis B R, Dreesen D S, et al. The US hot dry rock project. Geothermics, 1987, 16(4): 331 doi: 10.1016/0375-6505(87)90014-9
    [16]
    Breede K, Dzebisashvili K, Liu X L, et al. A systematic review of enhanced (or engineered) geothermal systems: Past, present and future. Geotherm Energy, 2013, 1(1): 1 doi: 10.1186/2195-9706-1-1
    [17]
    McClure M W, Horne R N. An investigation of stimulation mechanisms in Enhanced Geothermal Systems. Int J Rock Mech Min Sci, 2014, 72: 242 doi: 10.1016/j.ijrmms.2014.07.011
    [18]
    Olasolo P, Juárez M C, Morales M P, et al. Enhanced geothermal systems (EGS): A review. Renew Sustain Energy Rev, 2016, 56: 133 doi: 10.1016/j.rser.2015.11.031
    [19]
    Brown D W, Duchane D V, Heiken G, et al. Mining the Earth's Heat: Hot Dry Rock Geothermal Energy. Berlin: Springer Science & Business Media, 2012
    [20]
    Zhang C, Jiang G Z, Jia X F, et al. Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau. Renew Energy, 2019, 132: 959 doi: 10.1016/j.renene.2018.08.061
    [21]
    Kim K I, Min K B, Kim K Y, et al. Protocol for induced microseismicity in the first enhanced geothermal systems project in Pohang, Korea. Renew Sustain Energy Rev, 2018, 91: 1182 doi: 10.1016/j.rser.2018.04.062
    [22]
    Kappelmeyer O, Jung R. HDR experiments at falkenberg/Bavaria. Geothermics, 1987, 16(4): 375 doi: 10.1016/0375-6505(87)90017-4
    [23]
    Nemat-Nasser S, Abé H, Hirakawa S. Hydraulic Fracturing and Geothermal Energy. Dordrecht: Springer Netherlands, 1983
    [24]
    Ito H. Inferred role of natural fractures, veins, and breccias in development of the artificial geothermal reservoir at the Ogachi Hot Dry Rock site, Japan. J Geophys Res, 2003, 108(B9): 2426
    [25]
    Avouac J P, Vrain M, Kim T, et al. A convolution model for earthquake forecasting derived from seismicity recorded during the ST1 geothermal project on otaniemi campus, Finland // Proceedings World Geothermal Congress. Reykjavik, 2020: 1
    [26]
    Frieleifsson G ó, Elders W A, Bignall G. A plan for a 5 km-deep borehole at Reykjanes, Iceland, into the root zone of a black smoker on land. Sci Dril, 2013, 16: 73 doi: 10.5194/sd-16-73-2013
    [27]
    Sigurjónsson H ?, Cook D, Davíesdóttir B, et al. A life-cycle analysis of deep enhanced geothermal systems: The case studies of Reykjanes, Iceland and Vendenheim, France. Renew Energy, 2021, 177: 1076 doi: 10.1016/j.renene.2021.06.013
    [28]
    Richards H G, Parker R H, Green A S P, et al. The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall (1985—1988). Geothermics, 1994, 23(2): 73 doi: 10.1016/0375-6505(94)90032-9
    [29]
    Seibt P, Hoth P. The neustadt-glewe geothermal station: Form surveys to active operation. Therm Eng, 2004, 51(6): 494
    [30]
    Bargar K E, Keith T E C. Hydrothermal Mineralogy of Core from Geothermal Drill Holes at Newberry Volcano, Oregon. Washington, US Government Printing Office, 1999.
    [31]
    Mraz E, Moeck I, Bissmann S, et al. Multiphase fossil normal faults as geothermal exploration targets in the Western Bavarian Molasse Basin: Case study Mauerstetten. Z Dt Ges Geowiss, 2018, 169(3): 389
    [32]
    龐忠和, 羅霽, 程遠志, 等. 中國深層地熱能開采的地質條件評價. 地學前緣, 2020, 27(1):134 doi: 10.13745/j.esf.2020.1.15

    Pang Z H, Luo J, Cheng Y Z, et al. Evaluation of geological conditions for the development of deep geothermal energy in China. Earth Sci Front, 2020, 27(1): 134 doi: 10.13745/j.esf.2020.1.15
    [33]
    張森琦, 文冬光, 許天福, 等. 美國干熱巖“地熱能前沿瞭望臺研究計劃”與中美典型EGS場地勘查現狀對比. 地學前緣, 2019, 26(2):321

    Zhang S Q, Wen D G, Xu T F, et al. The US Frontier Observatory For Research in Geothermal Energy project and comparison of typical EGS site exploration status in China and US. Earth Sci Front, 2019, 26(2): 321
    [34]
    Shao S S, Ranjith P G, Wasantha P L P, et al. Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy. Geothermics, 2015, 54: 96 doi: 10.1016/j.geothermics.2014.11.005
    [35]
    Kang F C, Li Y C, Tang C A. Grain size heterogeneity controls strengthening to weakening of granite over high-temperature treatment. Int J Rock Mech Min Sci, 2021, 145: 104848 doi: 10.1016/j.ijrmms.2021.104848
    [36]
    Zhang W, Guo T K, Qu Z Q, et al. Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective. Energy, 2019, 178: 508 doi: 10.1016/j.energy.2019.04.131
    [37]
    Tomac I, Sauter M. A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development. Renew Sustain Energy Rev, 2018, 82: 3972 doi: 10.1016/j.rser.2017.10.076
    [38]
    Sanyal S K, Morrow J W, Butler S J, et al. Is EGS commercially feasible? Trans Geotherm Resour Counc, 2007, 31: 313
    [39]
    Schill E, Genter A, Cuenot N, et al. Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests. Geothermics, 2017, 70: 110 doi: 10.1016/j.geothermics.2017.06.003
    [40]
    亢方超, 唐春安. 基于開挖的增強型地熱系統概述. 地學前緣, 2020, 27(1):185 doi: 10.13745/j.esf.2020.1.20

    Kang F C, Tang C A. Overview of enhanced geothermal system (EGS) based on excavation in China. Earth Sci Front, 2020, 27(1): 185 doi: 10.13745/j.esf.2020.1.20
    [41]
    Sasaki S. Characteristics of microseismic events induced during hydraulic fracturing experiments at the Hijiori hot dry rock geothermal energy site, Yamagata, Japan. Tectonophysics, 1998, 289(1-3): 171 doi: 10.1016/S0040-1951(97)00314-4
    [42]
    Dyer B C, Schanz U, Ladner F, et al. Microseismic imaging of a geothermal reservoir stimulation. Lead Edge, 2008, 27(7): 856 doi: 10.1190/1.2954024
    [43]
    Kim K H, Ree J H, Kim Y, et al. Assessing whether the 2017 Mw 5. 4 Pohang earthquake in South Korea was an induced event. Science, 2018, 360(6392): 1007
    [44]
    Grigoli F, Cesca S, Rinaldi A P, et al. The November 2017 Mw 5. 5 Pohang earthquake:A possible case of induced seismicity in South Korea. Science, 2018, 360(6392): 1003
    [45]
    毛翔, 國殿斌, 羅璐, 等. 世界干熱巖地熱資源開發進展與地質背景分析. 地質論評, 2019, 65(6):1462 doi: 10.16509/j.georeview.2019.06.013

    Mao X, Guo D B, Luo L, et al. The global development process of hot dry rock (enhanced geothermal system) and its geological background. Geol Rev, 2019, 65(6): 1462 doi: 10.16509/j.georeview.2019.06.013
    [46]
    ásmundsson R, Pezard P, Sanjuan B, et al. High temperature instruments and methods developed for supercritical geothermal reservoir characterisation and exploitation—The HiTI project. Geothermics, 2014, 49: 90 doi: 10.1016/j.geothermics.2013.07.008
    [47]
    Moore J, McLennan J, Allis R, et al. The Utah frontier observatory for geothermal research (FORGE): results of recent drilling and geoscientific surveys // Geothermal Resources Council 42nd Annual Meeting-Geothermal Energy. Reno, 2018(42): 1034044
    [48]
    Xing P J, McLennan J, Moore J. In-situ stress measurements at the Utah frontier observatory for research in geothermal energy (FORGE) site. Energies, 2020, 13(21): 5842 doi: 10.3390/en13215842
    [49]
    Zhao J, Tang C A, Wang S J. Excavation based enhanced geothermal system (EGS-E): Introduction to a new concept. Geomech Geophys Geo-energ Geo-resour. 2020, 6(1): 6
    [50]
    唐春安, 趙堅, 王思敬. 基于開挖技術的增強型地熱系統EGS-E概念模型. 地熱能, 2019(1):17

    Tang C A, Zhao J, Wang S J. An EGS-E conceptual model of enhanced geothermal system based on excavation technology. Geotherm Energy, 2019(1): 17
    [51]
    蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43

    Cai M F, Dor J, Chen X S, et al. Development strategy for Co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43
    [52]
    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417

    Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417
    [53]
    郭奇峰, 蔡美峰, 吳星輝, 等. 面向2035年的金屬礦深部多場智能開采發展戰略. 工程科學學報, 2022, 44(4):476

    Guo Q F, Cai M F, Wu X H, et al. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035. Chin J Eng, 2022, 44(4): 476
    [54]
    宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124

    Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article views (871) PDF downloads(159) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频