Citation: | ZHANG Chao-yan, XIA Jing-fen, XIE Zhou-yun, ZHANG Ni, XU Yi-yi, TANG Li, YANG Guo-jing. Preparation and photocatalytic performance of NaF–TiO2/rGO with facet synergy[J]. Chinese Journal of Engineering, 2023, 45(2): 278-285. doi: 10.13374/j.issn2095-9389.2022.04.07.002 |
[1] |
Do J Y, Chava R K, Mandari K K, et al. Selective methane production from visible-light-driven photocatalytic carbon dioxide reduction using the surface plasmon resonance effect of superfine silver nanoparticles anchored on lithium titanium dioxide nanocubes (Ag@LixTiO2). Appl Catal B Environ, 2018, 237: 895 doi: 10.1016/j.apcatb.2018.06.070
|
[2] |
Zhu S Y, Liang S J, Gu Q, et al. Effect of Au supported TiO2 with dominant exposed {0 0 1} facets on the visible-light photocatalytic activity. Appl Catal B Environ, 2012, 119-120: 146 doi: 10.1016/j.apcatb.2012.02.020
|
[3] |
Xiang Q J, Yu J G, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc, 2012, 134(15): 6575 doi: 10.1021/ja302846n
|
[4] |
Wu Y Y, Chen X T, Cao J C, et al. Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2@TiO2 with sulfur/oxygen dual-defect. Appl Catal B Environ, 2021, 303: 120878
|
[5] |
Iliev V, Tomova D, Bilyarska L. Promoting the oxidative removal rate of 2, 4-dichlorophenoxyacetic acid on gold-doped WO3/TiO2/reduced graphene oxide photocatalysts under UV light irradiation. J Photochem Photobiol A Chem, 2018, 351: 69 doi: 10.1016/j.jphotochem.2017.10.022
|
[6] |
Fang F, Liu Y X, Sun X, et al. TiO2 facet-dependent reconstruction and photocatalysis of CuOx/TiO2 photocatalysts in CO2 photoreduction. Appl Surf Sci, 2021, 564: 150407 doi: 10.1016/j.apsusc.2021.150407
|
[7] |
Zhu Y A, Zhang Z Y, Lu N, et al. Prolonging charge-separation states by doping lanthanide-ions into{001}/{101}facets-coexposed TiO2 nanosheets for enhancing photocatalytic H2 evolution. Chin J Catal, 2019, 40(3): 413 doi: 10.1016/S1872-2067(18)63182-1
|
[8] |
常巖航, 夏靜芬, 楊國靖, 等. (001)面暴露TiO2催化劑的常壓制備及性能研究. 工業水處理, 2020, 40(6):27
Chang Y H, Xia J F, Yang G J, et al. Preparation and properties of TiO2 photocatalyst with (001) crystal plane at atmospheric pressure. Ind Water Treat, 2020, 40(6): 27
|
[9] |
趙星鵬, 王婭喬, 高生旺, 等. BiOBr/CeO2復合材料的制備及光催化降解磺胺異惡唑. 應用化學, 2021, 38(4):422
Zhao X P, Wang Y Q, Gao S W, et al. Synthesis of BiOBr/CeO2 composites for photocatalytic degradation of sulfisoxazole. Chin J Appl Chem, 2021, 38(4): 422
|
[10] |
Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201 doi: 10.1038/nature04235
|
[11] |
Upadhyay R K, Soin N, Roy S S. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review. RSC Adv, 2014, 4(8): 3823 doi: 10.1039/C3RA45013A
|
[12] |
Chowdhury S, Balasubramanian R. Graphene/semiconductor nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: A review. Appl Catal B Environ, 2014, 160-161: 307 doi: 10.1016/j.apcatb.2014.05.035
|
[13] |
Pastrana-Martínez L M, Morales-Torres S, Likodimos V, et al. Advanced nanostructured photocatalysts based on reduced graphene oxide-TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl Catal B Environ, 2012, 123-124: 241 doi: 10.1016/j.apcatb.2012.04.045
|
[14] |
Cheng P, Yang Z, Wang H, et al. TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water. Int J Hydrog Energy, 2012, 37(3): 2224 doi: 10.1016/j.ijhydene.2011.11.004
|
[15] |
Hu X B, Yu Y, Hou W M, et al. Effects of particle size and pH value on the hydrophilicity of graphene oxide. Appl Surf Sci, 2013, 273: 118 doi: 10.1016/j.apsusc.2013.01.201
|
[16] |
Pang Q Q, Zhong X H, Yan W S, et al. Role of percentage of {001} crystal facets in TiO2 supports toward the water-gas shift reaction over Au–TiO2 catalysts. Chem Eng J, 2022, 446: 137010 doi: 10.1016/j.cej.2022.137010
|
[17] |
Meyer J C, Geim A K, Katsnelson M I, et al. On the roughness of single- and bi-layer graphene membranes. Solid State Commun, 2007, 143(1-2): 101 doi: 10.1016/j.ssc.2007.02.047
|
[18] |
Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453(7195): 638 doi: 10.1038/nature06964
|
[19] |
Wang D T, Li X, Chen J F, et al. Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chem Eng J, 2012, 198-199: 547 doi: 10.1016/j.cej.2012.04.062
|
[20] |
Castañeda C, Martínez J J, Santos L, et al. Caffeine photocatalytic degradation using composites of NiO/TiO2-F and CuO/TiO2-F under UV irradiation. Chemosphere, 2022, 288(Pt 2): 132506
|
[21] |
Chen X B, Burda C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc, 2008, 130(15): 5018 doi: 10.1021/ja711023z
|
[22] |
肖藍, 王祎龍, 于水利, 等. 石墨烯及其復合材料在水處理中的應用. 化學進展, 2013, 25(增刊1): 419
Xiao L, Wang Y L, Yu S L, et al. Graphene-containing composite materials for water treatment. Prog Chem, 2013, 25(Suppl 1): 419
|
[23] |
Wang Z Y, Xiang H R, Zou J W, et al. Effect of process factors of microwave hydrothermal method on the preparation of micron-sized spherical α-Al2O3 particles. Inorg Chem Commun, 2021, 133: 108938 doi: 10.1016/j.inoche.2021.108938
|
[24] |
Chen P, Di S Y, Qiu X Q, et al. One-step synthesis of F-TiO2/g-C3N4 heterojunction as highly efficient visible-light-active catalysts for tetrabromobisphenol A and sulfamethazine degradation. Appl Surf Sci, 2022, 587: 152889 doi: 10.1016/j.apsusc.2022.152889
|
[25] |
Kumar R, Umar A, Kumar G, et al. Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceram Int, 2015, 41(6): 7773 doi: 10.1016/j.ceramint.2015.02.110
|
[26] |
柴晴雯, 呂艷, 張周, 等. Cu2O@ZnO復合光催化劑對難生物降解有機物的光降解. 中國環境科學, 2019, 39(7):2822
Chai Q W, Lü Y, Zhang Z, et al. Photodegradation of refractory organic compounds by Cu2O@ZnO composite photocatalyst. China Environ Sci, 2019, 39(7): 2822
|
[27] |
李翠霞, 金海澤, 楊志忠, 等. 介孔RGO/TiO2復合光催化材料的制備及光催化性能. 無機材料學報, 2017, 32(4):357 doi: 10.15541/jim20160349
Li C X, Jin H Z, Yang Z Z, et al. Preparation and photocatalytic properties of mesoporous RGO/TiO2 composites. J Inorg Mater, 2017, 32(4): 357 doi: 10.15541/jim20160349
|
[28] |
Rasalingam S, Peng R, Koodali R T. An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials. Appl Catal B Environ, 2015, 174-175: 49 doi: 10.1016/j.apcatb.2015.02.040
|