<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
ZHANG Chao, ZHANG Xin-xin. Feed-in tariff strategy of waste heat and residual pressure power generation in steel enterprises based on the Stackelberg game[J]. Chinese Journal of Engineering, 2023, 45(4): 643-653. doi: 10.13374/j.issn2095-9389.2022.03.20.003
Citation: ZHANG Chao, ZHANG Xin-xin. Feed-in tariff strategy of waste heat and residual pressure power generation in steel enterprises based on the Stackelberg game[J]. Chinese Journal of Engineering, 2023, 45(4): 643-653. doi: 10.13374/j.issn2095-9389.2022.03.20.003

Feed-in tariff strategy of waste heat and residual pressure power generation in steel enterprises based on the Stackelberg game

doi: 10.13374/j.issn2095-9389.2022.03.20.003
More Information
  • Corresponding author: E-mail: xxzhang@ustb.edu.cn
  • Received Date: 2022-03-20
    Available Online: 2022-09-23
  • Publish Date: 2023-04-01
  • This study analyzes the feed-in tariff strategy of steel enterprises in the context of the steel industry’s electricity market, which is composed of waste heat and pressure (WHP) power generation and traditional thermal power generation. A Stackelberg game model was developed to compare three pricing strategies (i.e., fixed price, fixed premium, and variable premium) for the feed-in tariff of WHP power generation technology among steel enterprises, traditional fossil fuel power generators, and local governments. Three pricing strategies for WHP generation feed-in tariffs are compared, and numerical simulations are run to examine the effects of market size, WHP generation cost coefficients, and steel firm environmental costs on optimal regulated prices, optimal steel firm profits, and optimal total social welfare, respectively. The following findings are obtained. (1) For optimal price regulation, increasing the market size and the coefficient of WHP generation cost has little effect on the optimal price regulation under the fixed price policy. The only way to increase the price of the fixed price policy is to increase the environmental cost of steel enterprises. Moreover, increasing the market size and the coefficient of WHP generation cost will reduce the price of fixed premia. Additionally, increasing the market size and the coefficient of WHP generation cost will reduce the price of fixed premia. Increases in market size and WHP generation costs will raise the price of variable premium insurance, whereas increases in enterprise environmental costs will lower and maintain the price of variable premium policy. (2) For optimal steel enterprise profit, increasing the market size and the cost coefficient of WHP generation will increase the profit of steel enterprises under the fixed premium policy. However, it will have little effect on the profit of the fixed price and variable premium policies. Moreover, increasing the environmental cost of enterprises will reduce the profit of the fixed premium policy, but it will have little effect on the profit of the fixed price and variable premium policy. (3) For optimal total social welfare, increasing the market size and environmental cost of steel enterprises can increase total social welfare under the fixed price policy. Moreover, increasing the coefficient of WHP generation cost has little effect on the fixed price policy welfare; increasing both the market size and the coefficient of WHP generation cost has little effect on the fixed premium policy welfare. Additionally, increasing the environmental cost of enterprises can increase the fixed premium policy welfare, and increasing the market size can increase the total variable premium policy welfare. Meanwhile, increasing the coefficient of WHP generation cost and the environmental cost of steel enterprises can reduce the variable premium policy welfare and finally level off. (4) Depending on the decision maker’s preferences, various optimal decisions can be made. Higher subsidies imply higher optimal regulation prices, which are accompanied by market riskiness, thus influencing the rate of market development of waste heat and waste pressure power feed-in tariffs. In optimal rule prices, low riskiness and low subsidies are fixed price strategies, high riskiness and moderate subsidies are fixed premium strategies, and high riskiness and high subsidies are variable premium strategies. In optimal steel firm profit, low riskiness and low subsidy, high riskiness and high subsidy, and low riskiness and high subsidy are fixed price, fixed premium, and variable premium strategies, respectively. In optimal total social welfare, moderate riskiness and moderate subsidy, low riskiness and low subsidy, and high riskiness and high subsidy are fixed price, fixed premium, and variable premium strategies, respectively.

     

  • loading
  • [1]
    冶金工業規劃研究院. 中國鋼鐵工業節能低碳發展報告(2020)[R/OL]. 新聞發布(2020-12-24)[2022-03-20]. http://www.mpi1972.com/xwzx/yndt/202012/t20201224_94730.html

    China Metallurgical Industry Planning and Research Institute. China steel industry energy conservation and low carbon development report 2020 [R/OL]. Press Releases (2020-12-24) [2022-03-20]. http://www.mpi1972.com/xwzx/yndt/202012/t20201224_94730.html
    [2]
    互聯網. 2020余熱發電行業發展現狀前景分析[EB/OL]. 南方財富網 (2020-05-28) [2022-03-20]. http://www.southmoney.com/shuju/lsysj/202005/5815786.html

    Internet. 2020 Waste heat power industry development status prospect analysis [EB/OL]. Southmoney Website (2020-05-28) [2022-03-20]. http://www.southmoney.com/shuju/lsysj/202005/5815786.html
    [3]
    柳長昕, 葉文祥, 劉健豪, 等. 面向船舶多種余熱梯級利用的TEG-ORC聯合循環性能. 工程科學學報, 2021, 43(4):577

    Liu C X, Ye W X, Liu J H, et al. TEG-ORC combined cycle performance for cascade recovery of various types of waste heat from vessels. Chin J Eng, 2021, 43(4): 577
    [4]
    李新創, 熊超, 姜曉東, 等. 以提升自發電為突破口加快推進鋼鐵綠色低碳發展. 中國冶金, 2021, 31(7):1 doi: 10.13228/j.boyuan.issn1006-9356.20200685

    Li X C, Xiong C, Jiang X D, et al. Accelerate green and low-carbon development of iron and steel industry by taking improvement of self-power generation as a breakthrough. China Metall, 2021, 31(7): 1 doi: 10.13228/j.boyuan.issn1006-9356.20200685
    [5]
    潘慧慧, 魏偉. 余熱余壓綜合利用發電的節能評價. 南京工業職業技術學院學報, 2017, 17(3):8 doi: 10.3969/j.issn.1671-4644.2017.03.003

    Pan H H, Wei W. Research on the evaluation of energy-saving for the complementary energy utilization. J Nanjing Inst Ind Technol, 2017, 17(3): 8 doi: 10.3969/j.issn.1671-4644.2017.03.003
    [6]
    樊三彩. 鋼鐵企業用電破局仍在路上[EB/OL]. 中國冶金報(2020-08-13) [2022-01-20]. http://www.csteelnews.com/sjzx/hyyj/202008/t20200813_37230.html

    Fan S C. Steel enterprises with electricity breakthrough is still on the road [EB/OL]. China metallurgical News (2020-08-13) [2022-03-20]. http://www.csteelnews.com/sjzx/hyyj/202008/t20200813_37230.html
    [7]
    黃銳. 強化應對氣候變化行動—中國國家自主貢獻[EB/OL]. 中央政府門戶網站. http://www.gov.cn/xinwen/2015-06/30/content_2887330.htm

    Huang R. Intensifying action on climate change-China's country-owned contribution [EB/OL]. PRC Central Government Website. http://www.gov.cn/xinwen/2015-06/30/content_2887330.htm
    [8]
    Bai W, Feng J X, Luo C H, et al. A comprehensive review on oxygen transport membranes: Development history, current status, and future directions. Int J Hydrog Energy, 2021, 46(73): 36257 doi: 10.1016/j.ijhydene.2021.08.177
    [9]
    Jie D F, Xu X Y, Guo F. The future of coal supply in China based on non-fossil energy development and carbon price strategies. Energy, 2021, 220: 119644 doi: 10.1016/j.energy.2020.119644
    [10]
    Korsbakken J I, Peters G P, Andrew R M. Uncertainties around reductions in China's coal use and CO2 emissions. Nat Clim Change, 2016, 6(7): 687 doi: 10.1038/nclimate2963
    [11]
    Zhang Z Y, Ding T, Zhou Q, et al. A review of technologies and applications on versatile energy storage systems. Renew Sustain Energy Rev, 2021, 148: 111263 doi: 10.1016/j.rser.2021.111263
    [12]
    Hannan M A, Wali S B, Ker P J, et al. Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues. J Energy Storage, 2021, 42: 103023 doi: 10.1016/j.est.2021.103023
    [13]
    國際能源網. 多地新能源+儲能成標配, 抽水蓄能或解成本高難題![EB/OL]. 能源資訊(2020-06-19) [2022-01-20].https://www.in-en.com/article/html/energy-2292647.shtml.

    International Energy Network. Many new energy + storage into the standard, pumped storage or solve the problem of high cost! [EB/OL]. Energy Information (2020-06-19) [2022-03-20].https://www.in-en.com/article/html/energy-2292647.shtml
    [14]
    張波, 李峰, 襲著尊, 等. 基于雙循環的余熱余壓梯級利用系統. 電力科學與工程, 2022, 38(1):50 doi: 10.3969/j.ISSN.1672-0792.2022.01.007

    Zhang B, Li F, Xi Z Z, et al. Cascade utilization of residual heat and pressure based on double cycle system. Electr Power Sci Eng, 2022, 38(1): 50 doi: 10.3969/j.ISSN.1672-0792.2022.01.007
    [15]
    江姍姍. 化工行業蒸汽余熱余壓回收利用的節能改造. 現代化工, 2018, 38(5):191 doi: 10.16606/j.cnki.issn0253-4320.2018.05.043

    Jiang S S. Recovery and utilization of residual heat and pressure of steam in chemical industry. Mod Chem Ind, 2018, 38(5): 191 doi: 10.16606/j.cnki.issn0253-4320.2018.05.043
    [16]
    工業和信息化部. 國家工業節能技術裝備推薦目錄(2020)40號 [EB/OL]. 政策發布 (2020-10) [2022-03-20]. http://www.sdningjin.gov.cn/n50594871/n50595002/n50595010/c59142905/part/59142911.pdf

    Ministry of Industry and Information Technology. National industrial energy-saving technology and equipment recommended directory (2020) No. 40 [EB/OL]. Policy Release (2020-10) [2022-03-20]. http://www.sdningjin.gov.cn/n50594871/n50595002/n50595010/c59142905/part/59142911.pdf
    [17]
    國家發展改革委, 財政部, 住房城鄉建設部, 等. 關于清理規范城鎮供水供電供氣供暖行業收費促進行業高質量發展的意見 [EB/OL]. 政策發布 (2020-12-23) [2022-03-20]. http://www.gov.cn/zhengce/content/2021-01/06/content_5577440.htm

    National Development and Reform Commission, Ministry of Finance, Ministry of Housing and Urban-Rural Development, et al. Opinions on cleaning and standardizing urban water supply and gas supply and heating industry charges to promote the high-quality development of the industry State Office Letter [EB/OL]. Policy Release (2020-12-23) [2022-03-20]. http://www.gov.cn/zhengce/content/2021-01/06/content_5577440.htm
    [18]
    國家發展改革委. “十四五”循環經濟發展規劃[EB/OL]. 政策公開 (2021-7-1) [2022-03-20].https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202107/t20210707_1285527.html?code=&state=123

    National Development and Reform Commission. The “Fourteenth Five-Year Plan” circular economy development plan development and reform of environmental resources [EB/OL]. Policy Release (2021-7-1) [2022-03-20].https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202107/t20210707_1285527.html?code=&state=123
    [19]
    國家發展改革委辦公廳. 國家發展改革委辦公廳關于取消臨時接電費和明確自備電廠有關收費政策的通知[EB/OL]. 政策公開(2017-11-21)[2022-03-20].https://www.ndrc.gov.cn/xxgk/zcfb/tz/201711/t20171129_962606.html?code=&state=123

    General Office of National Development and Reform Commission. Notice of the general office of the national development and reform commission on the abolition of temporary connection fees and clarification of the relevant charging policies for self-provided power plants [EB/OL]. Policy Release (2017-11-21) [2022-03-20].https://www.ndrc.gov.cn/xxgk/zcfb/tz/201711/t20171129_962606.html?code=&state=123
    [20]
    孫鵬, 劉玲, 樓潤平. 可再生能源發電產業上網價格規制政策—基于固定價格、不變溢價和可變溢價的比較. 系統工程, 2016, 34(5):82

    Sun P, Liu L, Lou R P. Feed-in tariff regulation policy of renewable energy industry—Based on the comparison of fixed price, constant-premium price, variable-premium price. Syst Eng, 2016, 34(5): 82
    [21]
    Yu X Y, Ge S X, Zhou D Q, et al. Whether feed-in tariff can be effectively replaced or not? An integrated analysis of renewable portfolio standards and green certificate trading. Energy, 2022, 245: 123241 doi: 10.1016/j.energy.2022.123241
    [22]
    Yu C H, Wu X Q, Lee W C, et al. Resource misallocation in the Chinese wind power industry: The role of feed-in tariff policy. Energy Econ, 2021, 98: 105236 doi: 10.1016/j.eneco.2021.105236
    [23]
    Menanteau P, Finon D, Lamy M L. Prices versus quantities: Choosing policies for promoting the development of renewable energy. Energy Policy, 2003, 31(8): 799 doi: 10.1016/S0301-4215(02)00133-7
    [24]
    Wei W, Xin-Gang Z, Jieying W. Can support policies promote the innovative diffusion of waste-to-energy technology? Environ Sci Pollut Res Int, 2022, 29(37): 55580
    [25]
    陳鄭波, 劉繼春, 劉俊勇, 等. 電力市場下兩部制容量電價與電量電價形成機制研究//中國電機工程學會電力市場專業委員會2018年學術年會. 成都, 2018: 28

    Chen Z B, Liu J C, Liu J Y, et al. Research on the formation mechanism of capacity electricity price and electricity price in the two-part electricity price in electricity market // 2018 Annual Academic Conference of Electricity Market Professional Committee of Chinese Electrical Engineering Society. Chengdu, 2018: 28
    [26]
    劉洽, 趙秋紅. 政策對發電企業能源決策的影響及最優化模型. 系統工程理論與實踐, 2015, 35(7):1717 doi: 10.12011/1000-6788(2015)7-1717

    Liu Q, Zhao Q H. Policy impacts on power generation enterprises' decisions and optimization model. Syst Eng Theory &Pract, 2015, 35(7): 1717 doi: 10.12011/1000-6788(2015)7-1717
    [27]
    國家能源局. 《2011-2012年投產電力工程項目造價情況》[EB/OL]. 中國電建(2014-06-13)[2022-09-11]. http://www.csdsj.com/art/2014/6/13/art_11247_997986.html

    National Energy Administration. The cost of electricity projects put into operation in 2011-2012 [EB/OL]. Power China (2014-06-13) [2022-09-11]. http://www.csdsj.com/art/2014/6/13/art_11247_997986.html
    [28]
    北京市碳交易電子交易平臺. 北京市碳排放權公開交易行情[EB/OL]. 網絡在線(2022-09-11)[2022-09-11] https://www.bjets.com.cn/

    Beijing Carbon Trading Electronic Trading Platform. Beijing carbon emission rights public trading quotation [EB/OL]. Website Online (2022-09-11) [2022-09-11].https://www.bjets.com.cn/
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(10)

    Article views (304) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频