<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHAO Ling, CHENG Zheng-ming, ZHENG Wei-cheng, WANG Tong-bin, LIU Zi-min, FAN Wei-wei, ZHANG Hao, LONG Hong-ming. Studies on thermal conductivity and durability of modified steel slag/rubber composites[J]. Chinese Journal of Engineering, 2023, 45(5): 765-773. doi: 10.13374/j.issn2095-9389.2022.03.19.003
Citation: ZHAO Ling, CHENG Zheng-ming, ZHENG Wei-cheng, WANG Tong-bin, LIU Zi-min, FAN Wei-wei, ZHANG Hao, LONG Hong-ming. Studies on thermal conductivity and durability of modified steel slag/rubber composites[J]. Chinese Journal of Engineering, 2023, 45(5): 765-773. doi: 10.13374/j.issn2095-9389.2022.03.19.003

Studies on thermal conductivity and durability of modified steel slag/rubber composites

doi: 10.13374/j.issn2095-9389.2022.03.19.003
More Information
  • Corresponding author: E-mail: yaflhm@126.com
  • Received Date: 2022-03-19
    Available Online: 2022-05-20
  • Publish Date: 2023-05-01
  • Modified steel slag powder was used to create a modified steel slag/rubber composite material using self-made steel slag grinding modifier and combining it with carbon black and rubber matrix to treat hot braised steel slag, electric furnace steel slag, and air-quenched steel slag. Next, the thermal conductivity of the three types of modified steel slag/rubber composites was measured using a thermal conductivity instrument at 1, 3, 5, 7, 9, and 11 days. The surface contact angle θ and crosslinking density of the above composites were calculated using Young’s and Flory’s equations before and after thermal oxygen aging, and their changes were analyzed using thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). As a result, the thermal conductivity of the modified electric furnace slag/rubber composite material was the lowest [0.187 W·m?1·K?1]. Among them, the median diameter (d50) of the modified electric furnace slag particles was the smallest (3.49 μm) without thermal oxygen aging, easily forming a compact structure of rubber-wrapped slag, but more challenging to develop thermal conductivity paths that reduced thermal conductivity. In the process of thermal oxygen aging, the structure of rubber-wrapped slag was destroyed. While the modified electric furnace slag/rubber composite material had large pores and the best dispersibility, which reduced interface thermal resistance and easily formed thermal conductivity paths, its thermal conductivity was the highest. After thermal oxygen aging, it was found that long cracks, deep holes, and increased roughness lying on rubber composite material surface increase the water absorption and decrease the contact angle. Besides, due to the largest particle size of the modified hot braised slag, oxygen is more likely to enter the rubber composite material under the heat action to react with the rubber molecular chain (double bond) to generate free radicals, thus raising molecular weight and growing crosslinking density. The modified air-quenched slag had the highest basicity (3.3), was detrimental to the vulcanization process, and was prone to forming an unstable carbon layer, resulting in more secondary combustion and a lower crosslinking density. Moreover, the mass fraction of residual material called carbon residue was only 1.02% at 800 ℃ and it had the worst durability after thermal oxygen aging.

     

  • loading
  • [1]
    董夢杰, 張繼川, 劉力, 等. 導熱橡膠研究進展. 高分子通報, 2018(4):15 doi: 10.14028/j.cnki.1003-3726.2018.04.002

    Dong M J, Zhang J C, Liu L, et al. Research progress in thermal conductive rubber. Polym Bull, 2018(4): 15 doi: 10.14028/j.cnki.1003-3726.2018.04.002
    [2]
    張浩, 黃新杰, 宗志芳, 等. 基于吸附性能的生物質基多孔活性炭制備方案的響應面法優化. 材料工程, 2017, 45(6):67 doi: 10.11868/j.issn.1001-4381.2016.000979

    Zhang H, Huang X J, Zong Z F, et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property. J Mater Eng, 2017, 45(6): 67 doi: 10.11868/j.issn.1001-4381.2016.000979
    [3]
    馮濤, 張新軍. 導熱橡膠技術的研究進展. 橡膠工業, 2017, 64(9):569 doi: 10.3969/j.issn.1000-890X.2017.09.012

    Feng T, Zhang X J. Research progress of thermal conductive rubber technology. China Rubber Ind, 2017, 64(9): 569 doi: 10.3969/j.issn.1000-890X.2017.09.012
    [4]
    Song J P, Tian K Y, Ma L X, et al. The effect of carbon black morphology to the thermal conductivity of natural rubber composites. Int J Heat Mass Transf, 2019, 137: 184 doi: 10.1016/j.ijheatmasstransfer.2019.03.078
    [5]
    張曉光, 蓋鵬興, 張寶庫, 等. AlN/碳纖維混合填充橡膠復合材料的導熱性能. 科學通報, 2018, 63(23):2403 doi: 10.1360/N972017-01319

    Zhang X G, Gai P X, Zhang B K, et al. Thermal conductivity of rubber composite materials with a hybrid AlN/carbon fiber filler. Chin Sci Bull, 2018, 63(23): 2403 doi: 10.1360/N972017-01319
    [6]
    Xie Z J, Sebald G, Guyomar D. Comparison of direct and indirect measurement of the elastocaloric effect in natural rubber. Appl Phys Lett, 2016, 108(4): 041901 doi: 10.1063/1.4940378
    [7]
    Ren Z X, Zhang H L, Huang J, et al. Investigation of RuOx doping stimulated the high catalytic activity of CeOx-MnOx/TiO2 catalysts in the NH3-SCR reaction: Structure-activity relationship and reaction mechanism. J Alloys Compd, 2022, 910: 164814 doi: 10.1016/j.jallcom.2022.164814
    [8]
    Zhang H, Fang Y. Temperature dependent photoluminescence of surfactant assisted electrochemically synthesized ZnSe nanostructures. J Alloys Compd, 2019, 781: 201 doi: 10.1016/j.jallcom.2018.11.375
    [9]
    張浩. 基于光催化性能的Cu?Ce/TiO2濕性能. 材料工程, 2018, 46(1):114 doi: 10.11868/j.issn.1001-4381.2016.001100

    Zhang H. Cu?Ce/TiO2. moisture performance based on photocatalytic performance. J Mater Eng, 2018, 46(1): 114 doi: 10.11868/j.issn.1001-4381.2016.001100
    [10]
    莊園. 摻鋼渣再生骨料自密實混凝土耐久性及壽命預測研究[學位論文]. 鎮江: 江蘇科技大學, 2017

    Zhuang Y. Research on Durability and Life Prediction of Recycled Aggregate of Self-Compacting Concrete with Steel Slag [Dissertation]. Zhenjiang: Jiangsu University of Science and Technology, 2017
    [11]
    王吉鳳, 付恒毅, 閆曉彤, 等. 鋼渣綜合利用研究現狀. 中國有色冶金, 2021, 50(6):77 doi: 10.19612/j.cnki.cn11-5066/tf.2021.06.015

    Wang J F, Fu H Y, Yan X T, et al. Research status of comprehensive utilization of steel slag. China Nonferrous Metall, 2021, 50(6): 77 doi: 10.19612/j.cnki.cn11-5066/tf.2021.06.015
    [12]
    楊素潔, 張冰, 楊亞東, 等. 鋼渣綜合利用現狀研究. 化工礦物與加工, 2021, 50(4):31

    Yang S J, Zhang B, Yang Y D, et al. Research on the status of comprehensive utilization of steel slag. Ind Miner Process, 2021, 50(4): 31
    [13]
    張浩, 臧君杰, 李海麗, 等. 相變儲濕復合材料及其應用研究進展. 材料工程, 2021, 49(5):56 doi: 10.11868/j.issn.1001-4381.2020.000792

    Zhang H, Zang J J, Li H L, et al. Research status and application of phase change humidity storage composite materials. J Mater Eng, 2021, 49(5): 56 doi: 10.11868/j.issn.1001-4381.2020.000792
    [14]
    Qian L X, Zhao B J, Wang H Y, et al. Valorization of the spent catalyst from flue gas denitrogenation by improving bio-oil production from hydrothermal liquefaction of pinewood sawdust. Fuel, 2022, 312(4): 122804
    [15]
    龍紅明, 王凱祥, 劉自民, 等. 鋼渣超微粉/橡膠復合材料的性能及補強-阻燃機制. 復合材料學報, 2020, 37(4):944 doi: 10.13801/j.cnki.fhclxb.20190828.001

    Long H M, Wang K X, Liu Z M, et al. Properties and reinforcement-flame retardant mechanism of steel slag ultrafine powder/rubber composites. Acta Mater Compos Sin, 2020, 37(4): 944 doi: 10.13801/j.cnki.fhclxb.20190828.001
    [16]
    顧恒星, 李輝, 金強, 等. 鐵水脫硫渣取代炭黑對丁苯橡膠性能的影響. 建筑材料學報, 2017, 20(6):925 doi: 10.3969/j.issn.1007-9629.2017.06.016

    Gu H X, Li H, Jin Q, et al. Effect of molten iron desulphurization slag to replace carbon black on the properties of styrene butadiene rubber. J Build Mater, 2017, 20(6): 925 doi: 10.3969/j.issn.1007-9629.2017.06.016
    [17]
    沈海洋, 王正洲. 鋼渣的表面改性及其在橡膠中應用研究. 材料導報, 2018, 32(6):1000 doi: 10.11896/j.issn.1005-023X.2018.06.027

    Shen H Y, Wang Z Z. Surface modification of steel slag and its application in compounded rubber. Mater Rev, 2018, 32(6): 1000 doi: 10.11896/j.issn.1005-023X.2018.06.027
    [18]
    張浩, 李海麗, 高青, 等. 特殊鋼鋼渣用作橡膠功能填料及其安全性分析. 工程科學學報, 2020, 42(5):628

    Zhang H, Li H L, Gao Q, et al. Safety analysis of specialty-steel slag used as rubber functional filler. Chin J Eng, 2020, 42(5): 628
    [19]
    張浩, 李海麗, 龍紅明, 等. 改性鋼渣?礦粉復合橡膠填料補強-阻燃機理的光譜學分析. 光譜學與光譜分析, 2021, 41(4):1138

    Zhang H, Li H L, Long H M, et al. Spectroscopic analysis of reinforcing-flame retardant mechanism of modified steel slag-mineral powder composite rubber filler. Spectrosc Spectr Anal, 2021, 41(4): 1138
    [20]
    Zhang H, Li Z H. Micro RNA-16 via twist1 inhibits EMT induced by PM2.5 exposure in human hepatocellular carcinoma. Open Med, 2019, 14: 673
    [21]
    朱振華. 老化對PP/SSFs導電復合材料的結構與性能的影響研究[學位論文]. 寧波: 寧波大學, 2018

    Zhu Z H. Effect of Aging on Structure and Properties of PP/SSFs Conductive Composites [Dissertation]. Ningbo: Ningbo University, 2018
    [22]
    李志輝. 三元乙丙橡膠老化研究[學位論文]. 廈門: 廈門大學, 2018

    Li Z H. Study on the Aging of Ethylene-Propylene-Diene Monomer [Dissertation]. Xiamen: Xiamen University, 2018
    [23]
    張延年, 單春紅, 鄭怡, 等. 凍融條件下公路橋梁板式圓形氯丁橡膠支座力學性能試驗. 工業建筑, 2013, 43(Suppl 1):594

    Zhang Y N, Shan C H, Zheng Y, et al. Mechanical tests of circular plain chloroprene rubber bearings of highway bridge under freeze-thaw cycle condition. Ind Constr, 2013, 43(Suppl 1): 594
    [24]
    鄭寧. 高阻尼橡膠隔震支座在海洋凍融循環作用下的劣化性能研究[學位論文]. 廣州: 廣州大學, 2019

    Zheng N. Research on the Performance Deterioration Law of High Damping Rubber Bearings Under Seawater Freeze-Thaw Cycle [Dissertation]. Guangzhou: Guangzhou University, 2019
    [25]
    Xu Z J, Song Y H, Zheng Q. Payne effect of carbon black filled natural rubber compounds and their carbon black gels. Polymer, 2019, 185: 121953 doi: 10.1016/j.polymer.2019.121953
    [26]
    肖輝. 凍融循環和氯離子侵蝕耦合作用下橡膠混凝土耐久性研究[學位論文]. 沈陽: 沈陽大學, 2020

    Xiao H. Study on Durability of Rubber Concrete Under Freeze-Thaw Cycle and Chloride Ion Erosion [Dissertation]. Shenyang: Shenyang University, 2020
    [27]
    杜暢. 北方冬季海洋環境對天然橡膠隔震支座的影響研究[學位論文]. 廣州: 廣州大學, 2018

    Du C. Research on the Influence of Winter Marine Environment on Natural Rubber Isolation Bearings in the North of China [Dissertation]. Guangzhou: Guangzhou University, 2018
    [28]
    丁玲. 天然橡膠和異戊橡膠老化研究[學位論文]. 廈門: 廈門大學, 2018

    Ding L. Study on the Aging of Natural Rubber and Isoprene Rubber [Dissertation]. Xiamen: Xiamen University, 2018
    [29]
    李幫平, 龍紅明, 劉自民, 等. 鋼渣超微粉取代部分炭黑高強耐磨型丁苯橡膠復合材料的制備及其性能研究. 現代化工, 2021, 41(1):149 doi: 10.16606/j.cnki.issn0253-4320.2021.01.030

    Li B P, Long H M, Liu Z M, et al. Preparation of high strength-wear resistant styrene butadiene rubber composite materials with steel slag ultrafine powder replacing partial carbon black and study on their properties. Mod Chem Ind, 2021, 41(1): 149 doi: 10.16606/j.cnki.issn0253-4320.2021.01.030
    [30]
    陳佳云. P(VDF-TrFE)基介電潤濕材料的制備及性能研究[學位論文]. 杭州: 浙江大學, 2019

    Chen J Y. The Preparation and Properties of P(VDF-TrFE) Based Electro Wetting Dielectric Materials [Dissertation]. Hangzhou: Zhejiang University, 2019
    [31]
    藍敏杰, 文慶珍, 朱金華. 自清潔涂層的制備及應用研究進展. 材料保護, 2020, 53(3):129 doi: 10.16577/j.cnki.42-1215/tb.2020.03.024

    Lan M J, Wen Q Z, Zhu J H. Preparation and application of self-cleaning coating. Mater Prot, 2020, 53(3): 129 doi: 10.16577/j.cnki.42-1215/tb.2020.03.024
    [32]
    Zhang H. Magnetic properties and thermal stability of SrFe12O19/gamma-Fe4N composites with effective magnetic exchange coupling. Ceram Int, 2020, 46(7): 9972 doi: 10.1016/j.ceramint.2019.12.220
    [33]
    曾憲奎, 褚福海, 郝建國, 等. 基于微觀表征方法的氯丁橡膠膠料熱氧老化機理的研究. 橡膠工業, 2018, 65(3):335 doi: 10.3969/j.issn.1000-890X.2018.03.020

    Zeng X K, Chu F H, Hao J G, et al. Study on thermal-oxidative aging mechanism of neoprene compound based on microscopic characterization methods. China Rubber Ind, 2018, 65(3): 335 doi: 10.3969/j.issn.1000-890X.2018.03.020
    [34]
    Qian Y, Wu H F, Yuan D Z, et al. In situ polymerization of polyimide-based nanocomposites via covalent incorporation of functionalized graphene nanosheets for enhancing mechanical, thermal, and electrical properties. J Appl Polym Sci, 2015, 132(44): 42724
    [35]
    李寧, 陸顯壽, 龍軍, 等. 巨尾桉單板表面粗糙度對其膠合性能影響的研究. 中國人造板, 2020, 27(3):16 doi: 10.3969/j.issn.1673-5064.2020.03.004

    Li N, Lu X S, Long J, et al. Study on the effect of surface roughness on the bonding performance of eucalyptus grandis veneer. China Wood Based Panels, 2020, 27(3): 16 doi: 10.3969/j.issn.1673-5064.2020.03.004
    [36]
    劉志堅, 王小萍, 陳曉尚, 等. 固相改性有機蒙脫土/炭黑/NR復合材料的耐老化性能研究. 橡膠工業, 2010, 57(1):12 doi: 10.3969/j.issn.1000-890X.2010.01.002

    Liu Z J, Wang X P, Chen X S, et al. Study on aging properties of GMMT/carbon black/NR composite. China Rubber Ind, 2010, 57(1): 12 doi: 10.3969/j.issn.1000-890X.2010.01.002
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (677) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频