<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
XU Huai-bing, WANG Ting, ZOU Wen-jie, ZHAO Jian-jun, TAO Le, ZHANG Zhi-jun. Ball mill load status identification method based on the convolutional neural network, optimized support vector machine model, and intelligent grinding media[J]. Chinese Journal of Engineering, 2022, 44(11): 1821-1831. doi: 10.13374/j.issn2095-9389.2022.03.06.001
Citation: XU Huai-bing, WANG Ting, ZOU Wen-jie, ZHAO Jian-jun, TAO Le, ZHANG Zhi-jun. Ball mill load status identification method based on the convolutional neural network, optimized support vector machine model, and intelligent grinding media[J]. Chinese Journal of Engineering, 2022, 44(11): 1821-1831. doi: 10.13374/j.issn2095-9389.2022.03.06.001

Ball mill load status identification method based on the convolutional neural network, optimized support vector machine model, and intelligent grinding media

doi: 10.13374/j.issn2095-9389.2022.03.06.001
More Information
  • Corresponding author: E-mail: wjzou@ustb.edu.cn
  • Received Date: 2022-03-06
    Available Online: 2022-05-05
  • Publish Date: 2022-11-01
  • A ball mill is important grinding equipment in a concentrator, and the accurate detection of the load status ensures that the ball mill runs in the best state, which helps optimize the grinding process, ensure the stable operation of the ball mill equipment, and save energy. The current mainstream detection methods cannot easily detect the movement inside the ball mill. Mill load requires a more efficient and direct detection method. In this study, the SM ?500 mm×500 mm ball mill was taken as the research object. Through theoretical analysis and simulation, intelligent grinding media with an embedded triaxial acceleration sensor and physical properties similar to that of ordinary steel ball media were designed to identify the mill load, and grinding experiments with different filling rates and other grinding conditions were conducted. Results revealed that the filling rate and the material to ball ratio are the important factors affecting the ?0.074 mm size products. Taking the grinding effect coefficient as an index to distinguish different load states and grinding effects, the best load state can be achieved under the conditions of 40% filling rate, 1∶37 material to ball ratio, and ~6 kg sample weight. The ball mill load was evaluated using the convolutional neural network (CNN) method and optimized support vector machine (SVM) models from the acceleration signal obtained by the intelligent grinding media. For the optimized SVM models, preprocessing of the acquired one-dimensional acceleration signal, including complementary ensemble empirical mode decomposition algorithm denoising, time-domain eigenvalue extraction, and sample entropy, was conducted. The feature vectors of mill load were included in the genetic algorithm and SVM (GA?SVM), grid search and SVM (GS?SVM), and partial swarm optimization and SVM (PSO?SVM) classification models for training. The research results revealed that the recognition accuracy of the PSO?SVM algorithm reaches 98.33%, but the training process tends to be tedious and time-consuming. For the CNN algorithm with excellent applicability in the field of image recognition, the detected acceleration signal data were converted into two-dimensional pictures and directly inputted into the CNN model based on the VGG19 network for classification and recognition. The classification and recognition accuracy of the mill load of the CNN method (i.e., 98.89%) was higher than that of the optimized SVM algorithm. Moreover, the calculation time of the CNN method was shorter than that of the optimized SVM algorithm. The ball mill load status identification method using the intelligent grinding media and CNN method could provide critical solutions and technical support for load detection and online evaluation.

     

  • loading
  • [1]
    湯健, 田福慶, 賈美英. 基于頻譜數據驅動的旋轉機械設備負荷軟測量. 北京: 國防工業出版社, 2015

    Tang J, Tian F Q, Jia M Y, et al. Rotating Mechanical Equipment Load Soft Measurement Based on Frequency Spectrum Data Drive. Beijing: National Defense Industry Press, 2015
    [2]
    湯健, 柴天佑, 趙立杰, 等. 基于振動頻譜的磨礦過程球磨機負荷參數集成建模方法. 控制理論與應用, 2012, 29(2):183

    Tang J, Chai T Y, Zhao L J, et al. Ensemble modeling for parameters of ball-mill load in grinding process based on frequency spectrum of shell vibration. Control Theory Appl, 2012, 29(2): 183
    [3]
    Góralczyk M, Krot P, Zimroz R, et al. Increasing energy efficiency and productivity of the comminution process in tumbling Mills by indirect measurements of internal dynamics—an overview. Energies, 2020, 13(24): 6735 doi: 10.3390/en13246735
    [4]
    Clermont B, Haas D B, Hancotte O. Real time mill management tools stabilizing your milling process // Proceeding of third International Platinum Conference. Sharjah, 2008, 13
    [5]
    Tang J, Yan G W, Liu Z, et al. Experimental analysis of wet mill load parameter based on multiple channel mechanical signals under multiple grinding conditions. Miner Eng, 2020, 159: 106609 doi: 10.1016/j.mineng.2020.106609
    [6]
    Yoshida T, Kuratani F, Ito T, et al. Vibration characteristics of an operating ball mill. J Phys:Conf Ser, 2019, 1264(1): 012016 doi: 10.1088/1742-6596/1264/1/012016
    [7]
    Dunn D J, Martin R G. Measurement of impact forces in ball mills. Min Eng, 1978, 30(4): 384
    [8]
    Rolf L, Vongluekiet T. Measurement of energy distributions in ball Mills. Ger Chem Eng, 1984, 7(5): 287
    [9]
    Gao R X, Thelen W. Sensor-integrated grinding balls for on-line load distribution measurement in ball Mills. Proc Inst Mech Eng B J Eng Manuf, 1994, 208(3): 183 doi: 10.1243/PIME_PROC_1994_208_077_02
    [10]
    Martins S, Li W, Radziszewski P, et al. Validating the instrumented ball outputs with simple trajectories. Miner Eng, 2008, 21(11): 782 doi: 10.1016/j.mineng.2008.05.016
    [11]
    Martins S, Li W, Radziszewski P, et al. Experimental and simulated instrumented ball in a tumbling mill—A comparison. Miner Eng, 2013, 43-44: 79 doi: 10.1016/j.mineng.2012.09.002
    [12]
    Yin Z X, Peng Y X, Zhu Z C, et al. Effect of mill speed and slurry filling on the charge dynamics by an instrumented ball. Adv Powder Technol, 2019, 30(8): 1611 doi: 10.1016/j.apt.2019.05.009
    [13]
    尹自信. 球磨機鐵礦石顆粒破碎及粒度分布行為研究[學位論文]. 徐州: 中國礦業大學, 2020

    Yin Z X. Study on Breakage and Size Distribution Behaviour of Iron Ore Particle in Ball Mills [Dissertation]. Xuzhou: China University of Mining and Technology, 2020
    [14]
    Wang T, Zou W J, Xu R J, et al. Assessing load in ball mill using instrumented grinding media. Miner Eng, 2021, 173: 107198 doi: 10.1016/j.mineng.2021.107198
    [15]
    黃胤淇, 肖慶飛, 郭運鑫, 等. 江西某銅礦磨礦對比試驗及應用研究. 黃金科學技術, 2019, 27(2):278

    Huang Y Q, Xiao Q F, Guo Y X, et al. Comparison test and application study on grinding of a copper mine in Jiangxi Province. Gold Sci Technol, 2019, 27(2): 278
    [16]
    Xue S H, Tan J P, Shi L X, et al. Rope tension fault diagnosis in hoisting systems based on vibration signals using EEMD, improved permutation entropy, and PSO-SVM. Entropy, 2020, 22(2): 209 doi: 10.3390/e22020209
    [17]
    李翠平, 鄭瑤瑕, 張佳, 等. 基于遺傳算法優化的支持向量機品位插值模型. 北京科技大學學報, 2013, 35(7):837

    Li C P, Zheng Y X, Zhang J, et al. Ore grade interpolation model based on support vector machines optimized by genetic algorithms. J Univ Sci Technol Beijing, 2013, 35(7): 837
    [18]
    周建民, 王發令, 張臣臣, 等. 基于特征優選和GA?SVM的滾動軸承智能評估方法. 振動與沖擊, 2021, 40(4):227 doi: 10.13465/j.cnki.jvs.2021.04.031

    Zhou J M, Wang F L, Zhang C C, et al. An intelligent method for rolling bearing evaluation using feature optimization and GA?SVM. J Vib Shock, 2021, 40(4): 227 doi: 10.13465/j.cnki.jvs.2021.04.031
    [19]
    王亮, 張安元, 李佳佳, 等. 基于時頻組合特征的PSO?SVM手勢識別方法. 長春理工大學學報(自然科學版), 2021, 44(4):104

    Wang L, Zhang A Y, Li J J, et al. PSO?SVM gesture recognition method based on time-frequency combination features. J Chang Univ Sci Technol, 2021, 44(4): 104
    [20]
    吳夏平, 王福明. 基于最小二乘法原理的趨勢項處理研究. 微計算機信息, 2008, 24(30):254 doi: 10.3969/j.issn.1008-0570.2008.30.102

    Wu X P, Wang F M. The research of trend remove based on the principle of least-squares method. Microcomput Inf, 2008, 24(30): 254 doi: 10.3969/j.issn.1008-0570.2008.30.102
    [21]
    Yeh J R, Shieh J S, Huang N E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv Adapt Data Anal, 2010, 2(2): 135 doi: 10.1142/S1793536910000422
    [22]
    Cai G P, Liu X, Dai C C, et al. Load state identification method for ball mills based on improved EWT, multiscale fuzzy entropy and AEPSO_PNN classification. Processes, 2019, 7(10): 725 doi: 10.3390/pr7100725
    [23]
    熊洋. 基于振動特征提取的球磨機負荷預測研究[學位論文]. 贛州: 江西理工大學, 2016

    Xiong Y. Research on Load Prediction of Ball Mill Based on Vibration Feature Extraction [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2016
    [24]
    張學清, 梁軍, 張熙, 等. 基于樣本熵和極端學習機的超短期風電功率組合預測模型. 中國電機工程學報, 2013, 33(25):33 doi: 10.13334/j.0258-8013.pcsee.2013.25.012

    Zhang X Q, Liang J, Zhang X, et al. Combined model for ultra short-term wind power prediction based on sample entropy and extreme learning machine. Proc CSEE, 2013, 33(25): 33 doi: 10.13334/j.0258-8013.pcsee.2013.25.012
    [25]
    Liu Y J, Wang B H, Li R P, et al. Relapse risk prediction for children with henoch-sch?nlein purpura based on GA?SVM. Int J Bioautomation, 2020, 24(2): 117 doi: 10.7546/ijba.2020.24.2.000608
    [26]
    Pinedo-Sánchez L A, Mercado-Ravell D A, Carballo-Monsivais C A. Vibration analysis in bearings for failure prevention using CNN. J Braz Soc Mech Sci Eng, 2020, 42(12): 1
    [27]
    馬云飛, 賈希勝, 白華軍, 等. 基于一維CNN參數優化的壓縮振動信號故障診斷. 系統工程與電子技術, 2020, 42(9):1911 doi: 10.3969/j.issn.1001-506X.2020.09.05

    Ma Y F, Jia X S, Bai H J, et al. Fault diagnosis of compressed vibration signal based on 1-dimensional CNN with optimized parameters. Syst Eng Electron, 2020, 42(9): 1911 doi: 10.3969/j.issn.1001-506X.2020.09.05
    [28]
    趙小強, 張亞洲. 利用改進卷積神經網絡的滾動軸承變工況故障診斷方法. 西安交通大學學報, 2021, 55(12):108 doi: 10.7652/xjtuxb202112013

    Zhao X Q, Zhang Y Z. Improved CNN-based fault diagnosis method for rolling bearings under variable working conditions. J Xi’an Jiaotong Univ, 2021, 55(12): 108 doi: 10.7652/xjtuxb202112013
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article views (442) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频