<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
JIANG Yuan, LI Qing, MIAO Lei, Lü Meng, WU Jian-wen, CHEN Ming-xuan. Overview of the arc mechanism and extinguishing in the circuit breaker of a more-electric aircraft[J]. Chinese Journal of Engineering, 2023, 45(4): 611-620. doi: 10.13374/j.issn2095-9389.2022.02.28.002
Citation: JIANG Yuan, LI Qing, MIAO Lei, Lü Meng, WU Jian-wen, CHEN Ming-xuan. Overview of the arc mechanism and extinguishing in the circuit breaker of a more-electric aircraft[J]. Chinese Journal of Engineering, 2023, 45(4): 611-620. doi: 10.13374/j.issn2095-9389.2022.02.28.002

Overview of the arc mechanism and extinguishing in the circuit breaker of a more-electric aircraft

doi: 10.13374/j.issn2095-9389.2022.02.28.002
More Information
  • Corresponding author: E-mail: liqing@ies.ustb.edu.cn
  • Received Date: 2022-02-28
    Available Online: 2022-07-27
  • Publish Date: 2023-04-01
  • A more-electric aircraft refers to an aircraft whose secondary power is unified from the traditional multi-energy, such as mechanical energy, hydraulic energy, and pneumatic energy, to the electrical energy, which has the advantages of a simple system structure, high reliability, high maintainability, and high energy efficiency. The most advanced architecture of its power system is the 360–800 Hz variable frequency AC power supply and the 270 V high-voltage DC power supply, which have been applied in the Airbus A380, Boeing B787, F-22, and other more-electric aircraft. As power consumption increases, the power distribution, power network, and cable layout in a more-electric aircraft become more complex, and the probability of electrical faults such as short circuits increases. The arc generated by fault current not only severely affects the life, reliability, and safety of cable and electrical equipment but also limits the capacity expansion of an aviation power system and the improvement of flight performance. The circuit breaker in a more-electric aircraft is a key device for arc extinguishing. Analyzing the complex mechanism of the arc-discharging process in a circuit breaker helps improve the arc-extinguishing performance. To further promote research on the arc mechanism and extinguishing technology of circuit breakers in more-electric aircraft power systems, in this paper, the structure of civilian and military more-electric aircraft power systems and the difficulties in the electrical fault and protection are first analyzed. Then, the research status of the arc-extinguishing technology of the aviation variable frequency AC circuit breaker and the 270 V high-voltage DC circuit breaker are summarized. For an intermediate-frequency vacuum arc, the instantaneous input power inside the gap and at the anode increases with the current frequency, which indicates that the half-wave input power increases with the frequency and proves that the transition state arc is an important source of anode ablation during intermediate-frequency arcing. Under the same current condition, the frequency increases. On the one hand, when the value of di/dt increases, the arc-extinguishing ability decreases with increasing frequency. On the other hand, intensifying the skin effect leads to an increase in the arc center pressure, arc contraction, and magnetic field hysteresis, which is not conducive to arc extinguishing. In addition, the metal vapor density vaporized by droplets reduces the recovery strength of the dielectric after the current zero, which is not conducive to arc extinguishing. For the 270 V DC arc, air, nitrogen, helium, hydrogen, and other gas are presently used in aviation power systems, among which hydrogen is the research hotspot. Finally, future research trends of arc extinguishing technology for aviation circuit breakers are predicted.

     

  • loading
  • [1]
    Sarlioglu B, Morris C T. More electric aircraft: Review, challenges, and opportunities for commercial transport aircraft. IEEE Trans Transp Electrification, 2015, 1(1): 54 doi: 10.1109/TTE.2015.2426499
    [2]
    劉志杰, 宋叢叢, 梁金源, 等. 空中加油機加油軟管系統建模和控制研究進展. 工程科學學報, 2021, 43(1):150

    Liu Z J, Song C C, Liang J Y, et al. Advances in modeling and control of probe-drogue aerial refueling. Chin J Eng, 2021, 43(1): 150
    [3]
    嚴仰光, 秦海鴻, 龔春英, 等. 多電飛機與電力電子. 南京航空航天大學學報, 2014, 46(1):11 doi: 10.3969/j.issn.1005-2615.2014.01.002

    Yan Y G, Qin H H, Gong C Y, et al. More electric aircraft and power electronics. J Nanjing Univ Aeronaut &Astronaut, 2014, 46(1): 11 doi: 10.3969/j.issn.1005-2615.2014.01.002
    [4]
    付強, 陳向陽, 鄭子亮, 等. 仿生撲翼飛行器的視覺感知系統研究進展. 工程科學學報, 2019, 41(12):1512

    Fu Q, Chen X Y, Zheng Z L, et al. Research progress on visual perception system of bionic flapping-wing aerial vehicles. Chin J Eng, 2019, 41(12): 1512
    [5]
    Jiang Y, Li Q. Vacuum Circuit Breaker for Aviation Variable Frequency Power System: Theory and Application of Arc in Electrical Apparatus. Singapore: Springer Press, 2021
    [6]
    樊智勇, 譚卓, 劉濤. 多電飛機電氣系統故障傳遞模式研究. 現代電子技術, 2018, 41(24):48

    Fan Z Y, Tan Z, Liu T. Research on fault transmission modes for electrical system of more electric aircraft. Mod Electron Tech, 2018, 41(24): 48
    [7]
    何超. 基于時域反射的飛機線路故障定位方法研究. 電子測試, 2018(15):53 doi: 10.3969/j.issn.1000-8519.2018.15.021

    He C. Research on fault location method of aircraft wire based on time-frequency reflection. Electron Test, 2018(15): 53 doi: 10.3969/j.issn.1000-8519.2018.15.021
    [8]
    李擎, 胡偉陽, 李江昀, 等. 基于深度學習的行人重識別方法綜述. 工程科學學報, 2022, 44(5):920

    Li Q, Hu W Y, Li J Y, et al. A survey of person re-identification based on deep learning. Chin J Eng, 2022, 44(5): 920
    [9]
    劉麥玲, 胡興榮. 民用飛機配電線路保護裝置的選取分析. 民用飛機設計與研究, 2008, 22(4):21 doi: 10.3969/j.issn.1674-9804.2008.04.005

    Liu M L, Hu X R. Selection and analysis of protection device for civil aircraft distribution. Civ Aircr Des Res, 2008, 22(4): 21 doi: 10.3969/j.issn.1674-9804.2008.04.005
    [10]
    丁驍, 湯廣福, 韓民曉, 等. 混合式高壓直流斷路器型式試驗及其等效性評價. 電網技術, 2018, 42(1):72 doi: 10.13335/j.1000-3673.pst.2017.1293

    Ding X, Tang G F, Han M X, et al. Design and equivalence evaluation of type test for hybrid DC circuit breaker. Power Syst Technol, 2018, 42(1): 72 doi: 10.13335/j.1000-3673.pst.2017.1293
    [11]
    吳翊, 榮命哲, 鐘建英, 等. 中高壓直流開斷技術. 高電壓技術, 2018, 44(2):337 doi: 10.13336/j.1003-6520.hve.20180131001

    Wu Y, Rong M Z, Zhong J Y, et al. Medium and high voltage DC breaking technology. High Volt Eng, 2018, 44(2): 337 doi: 10.13336/j.1003-6520.hve.20180131001
    [12]
    何俊佳, 袁召, 趙文婷, 等. 直流斷路器技術發展綜述. 南方電網技術, 2015, 9(2):9

    He J J, Yuan Z, Zhao W T, et al. Review of DC circuit breaker technology development. South Power Syst Technol, 2015, 9(2): 9
    [13]
    翟國富, 薄凱, 周學, 等. 直流大功率繼電器電弧研究綜述. 電工技術學報, 2017, 32(22):251 doi: 10.19595/j.cnki.1000-6753.tces.160605

    Zhai G F, Bo K, Zhou X, et al. Investigation on breaking arc in DC high-power relays: A review. Trans China Electrotech Soc, 2017, 32(22): 251 doi: 10.19595/j.cnki.1000-6753.tces.160605
    [14]
    李興文. 低壓電器空氣電弧的近期研究進展. 電器與能效管理技術, 2018, 22:12

    Li X W. Research progress on air arc of low voltage electrical appliances. Electr &Energy Manag Technol, 2018, 22: 12
    [15]
    Muratovi? M, Kapetanovi? M, Ahmethod?i? A, et al. Nozzle ablation model: Calculation of nozzle ablation intensity and its influence on state of SF6 gas in thermal chamber // Proceedings of the IEEE International Conference on Solid Dielectrics. Bologna, 2013: 692
    [16]
    李奎, 高志成, 武一, 等. 基于統計回歸和非線性Wiener過程的交流接觸器剩余壽命預測. 電工技術學報, 2019, 34(19):4058

    Li K, Gao Z C, Wu Y, et al. Remaining lifetime prediction of AC contactor based on statistical regression and nonlinear Wiener process. Trans China Electrotech Soc, 2019, 34(19): 4058
    [17]
    崔芮華, 王洋, 王傳宇, 等. 基于多信息融合的航空線路串聯故障電弧識別方法. 電工技術學報, 2019, 34(增刊1): 118

    Cui R H, Wang Y, Wang C Y, et al. Series arc fault identification method in aviation lines based on multi-information fusion. Trans China Electrotech Soc, 2019, 34(Suppl 1): 118
    [18]
    Tong Z A, Wu J W, Li K. Numerical simulation of intermediate-frequency vacuum arc. IEEE Access, 2020, 8: 143085 doi: 10.1109/ACCESS.2020.3014373
    [19]
    吳世湘. 軍事或航空航天用新一代270V直流接觸器. 電工電氣, 2009, 29(11):43 doi: 10.3969/j.issn.1007-3175.2009.11.012

    Wu S X. New generation 270V DC contractor for military or aeronautics & astronautics use. Electrotech Electr, 2009, 29(11): 43 doi: 10.3969/j.issn.1007-3175.2009.11.012
    [20]
    許志紅. 電器理論基礎. 北京: 機械工業出版社, 2014

    Xu Z H. Theoretical Basis of Electrical Appliances. Beijing: China Machine Press, 2014
    [21]
    Niu C P, Ding J W, Yang F, et al. The influence of contact space on arc commutation process in air circuit breaker. Plasma Sci Technol, 2016, 18(5): 460 doi: 10.1088/1009-0630/18/5/02
    [22]
    王建華, 耿英三, 劉志遠, 等. 高電壓等級真空開斷技術. 高壓電器, 2017, 53(3):1 doi: 10.13296/j.1001-1609.hva.2017.03.001

    Wang J H, Geng Y S, Liu Z Y, et al. High voltage level vacuum switching technology. High Volt Apparatus, 2017, 53(3): 1 doi: 10.13296/j.1001-1609.hva.2017.03.001
    [23]
    宗天元, 李震彪, 魏江, 等. 非對稱配對觸頭材料的電性能試驗研究. 電工材料, 2017(6):3 doi: 10.16786/j.cnki.1671-8887.eem.2017.06.001

    Zong T Y, Li Z B, W J, et al. Experimental study on electrical contact performance under different pairing. Electr Eng Mater, 2017(6): 3 doi: 10.16786/j.cnki.1671-8887.eem.2017.06.001
    [24]
    Rich J A, Farrall G A. Vacuum arc recovery phenomena. Proc IEEE, 1964, 52(11): 1293 doi: 10.1109/PROC.1964.3365
    [25]
    Jenkins J E, Sherman J C, Webster R, et al. Measurement of the neutral vapour density decay following the extinction of a high-current vacuum arc between copper electrodes. J Physics D Applied Physics, 1975, 8(12): L139 doi: 10.1088/0022-3727/8/12/003
    [26]
    Wang L J, Huang X L, Zhang X, et al. Modeling and simulation of high-current vacuum arc considering the micro process of anode vapor. J Phys D Appl Phys, 2017, 50(9): 095203 doi: 10.1088/1361-6463/aa5620
    [27]
    Jia S L, Yang D G, Wang L J, et al. Investigation of the swirl flow on anode surface in high-current vacuum arcs. J Appl Phys, 2012, 111(4): 043301 doi: 10.1063/1.3684974
    [28]
    Miller H C. Anode modes in vacuum arcs: Update. IEEE Trans Plasma Sci, 2017, 45(8): 2366 doi: 10.1109/TPS.2017.2708695
    [29]
    Zalucki Z, Janiszewski J. Transition from constricted to diffuse vacuum arc modes during high AC current interruption. IEEE Trans Plasma Sci, 1999, 27(4): 991 doi: 10.1109/27.782271
    [30]
    Matsui Y, Sano A, Komatsu H, et al. Vacuum arc phenomena under various axial magnetic field and anode melting // Proceedings of the 24th International Symposium on Discharges and Electrical Insulation in Vacuum. Braunschweig, 2010: 324
    [31]
    Liu Z X, Xiu S X, Wang X, et al. The characteristics of vacuum arc in the process of transition to diffuse mode under transverse magnetic field. IEEE Trans Plasma Sci, 2019, 47(8): 3554 doi: 10.1109/TPS.2019.2915817
    [32]
    Ma H, Zhang Z Q, Liu Z Y, et al. Effect of six pure metals cathode on constricted characteristics of high-current vacuum arcs subject to axial magnetic field. J Phys D:Appl Phys, 2019, 52(26): 265201 doi: 10.1088/1361-6463/ab16b1
    [33]
    王立軍, 王淵, 黃小龍, 等. 縱向磁場下真空電弧中陽極燒蝕過程的實驗及仿真研究綜述. 高電壓技術, 2019, 45(7):2343 doi: 10.13336/j.1003-6520.hve.20190628020

    Wang L J, Wang Y, Huang X L, et al. Experiments and simulation studies on anode erosion process in vacuum arc under axial magnetic field: A review. High Volt Eng, 2019, 45(7): 2343 doi: 10.13336/j.1003-6520.hve.20190628020
    [34]
    Liu L H, Zhuang J W, Xu G S, et al. The characteristics of vacuum arc in the process of DC interruption using butt contacts and TMF contacts. IEEE Trans Plasma Sci, 2014, 42(6): 1736 doi: 10.1109/TPS.2014.2320574
    [35]
    Ge G W, Cheng X, Su K, et al. Investigation on the magnetic arc control of multi-break VCBs // Proceedings of 28th International Symposium on Discharges and Electrical Insulation in Vacuum. Greifswald, 2018: 287
    [36]
    Mo Y P, Shi Z Q, Jia S L, et al. Experimental investigation on the postarc current in vacuum circuit breakers and the influence of arcing memory effect. IEEE Trans Plasma Sci, 2019, 47(8): 3508 doi: 10.1109/TPS.2019.2926762
    [37]
    Li S M, Geng Y S, Liu Z Y, et al. Discharge and breakdown mechanism transition in the conditioning process between plane-plane copper electrodes in vacuum. IEEE Trans Dielectr Electr Insul, 2019, 26(2): 539 doi: 10.1109/TDEI.2018.007505
    [38]
    Wang J, Wu J W, Zhu L Y. Properties of intermediate-frequency vacuum arc under axial magnetic field. IEEE Trans Plasma Sci, 2009, 37(8): 1477 doi: 10.1109/TPS.2009.2024748
    [39]
    Wang J, Wu J W, Zhu L Y. Arc behavior of intermediate-frequency vacuum arc on axial magnetic field contacts. IEEE Trans Plasma Sci, 2011, 39(6): 1336 doi: 10.1109/TPS.2011.2119496
    [40]
    Jiang Y, Wu J W, Ma S L, et al. Appearance of vacuum arcs in axial magnetic field and butt contacts at intermediate frequencies. IEEE Trans Plasma Sci, 2019, 47(2): 1405 doi: 10.1109/TPS.2019.2892513
    [41]
    Ding C, Yuan Z, He J J. Effect of vacuum arc cathode spot distribution on breaking capacity of the arc-extinguishing chamber. Jpn J Appl Phys, 2017, 56(10): 106001 doi: 10.7567/JJAP.56.106001
    [42]
    彭振東, 楊晨光, 李博, 等. 直流真空斷路器大電流強迫換流分斷特性分析與驗證. 高電壓技術, 2020, 46(2):603 doi: 10.13336/j.1003-6520.hve.20200131026

    Peng Z D, Yang C G, Li B, et al. Analysis and test of the high current forced commutation interruption characteristics for a DC vacuum circuit breaker. High Volt Eng, 2020, 46(2): 603 doi: 10.13336/j.1003-6520.hve.20200131026
    [43]
    陳占清, 段雄英, 廖敏夫, 等. 電弧參數對激光觸發真空開關重頻開斷特性的影響. 電工技術學報, 2019, 34(21):4501 doi: 10.19595/j.cnki.1000-6753.tces.181359

    Chen Z Q, Duan X Y, Liao M F, et al. Influences of arc parameters on the repeated interruption performances of laser triggered vacuum switch. Trans China Electrotech Soc, 2019, 34(21): 4501 doi: 10.19595/j.cnki.1000-6753.tces.181359
    [44]
    Jiang Y, Wu J W, Jia B W. Reignition after interruption of intermediate-frequency vacuum arc in aircraft power system. IEEE Access, 2020, 6: 8649
    [45]
    Jiang Y, Wu J W, Li Q, et al. Influence of metal vapor on post-arc breakdown for intermediate frequency vacuum arc. Vacuum, 2021, 193: 110551 doi: 10.1016/j.vacuum.2021.110551
    [46]
    Ishikawa M, Ikeda H, Yanabu S, et al. Numerical study of delayed-zero-current interruption phenomena using transient analysis model for an ARC in SF6 flow. IEEE Power Eng Rev, 1984, 4(12): 40
    [47]
    臧春艷. 航天繼電器穩態電弧等離子體電離過程與電弧特性研究[學位論文]. 武漢: 華中科技大學, 2006

    Zang C Y. Research on Static-State Arc Plasma Ionizations and Arc Characteristics for Aerospace Relays [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2006
    [48]
    周學. 航天繼電器分斷電弧及其抑制措施的仿真和實驗研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2011

    Zhou X. Simulation and Experiment Research on Electrical Arc and Its Extinguishing Methods in Aerospace Relay [Dissertation]. Harbin: Harbin Institute of Technology, 2011
    [49]
    Zhou X, Cui X L, Chen M, et al. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasma mixed with silver vapor. Plasma Sci Technol, 2016, 18(5): 560 doi: 10.1088/1009-0630/18/5/20
    [50]
    Xin C, Wu J W, Liu B. Investigation of DC arc in hydrogen and air // Proceedings of the 2nd International Conference on Electric Power Equipment - Switching Technology. Matsue, 2013: 1
    [51]
    Xin C, Wu J W, Liu B, et al. Plasma characteristics of DC hydrogen-nitrogen mixed gas arc under high pressure. IEEE Trans Plasma Sci, 2014, 42(10): 2722 doi: 10.1109/TPS.2014.2340432
    [52]
    辛超, 武建文. 直流氫氣-氮氣混合氣體電弧開斷過程實驗研究. 電工技術學報, 2015, 30(13):117 doi: 10.3969/j.issn.1000-6753.2015.13.016

    Xin C, Wu J W. Experimental study on the breaking process of DC hydrogen-nitrogen mixed gas arc. Trans China Electrotech Soc, 2015, 30(13): 117 doi: 10.3969/j.issn.1000-6753.2015.13.016
    [53]
    Zhai G F, Bo K, Chen M, et al. Investigation on plasma jet flow phenomena during DC air arc motion in bridge-type contacts. Plasma Sci Technol, 2016, 18(5): 485 doi: 10.1088/1009-0630/18/5/07
    [54]
    李振平. 270V航空直流斷路器滅弧技術的研究[學位論文]. 天津: 河北工業大學, 2015

    Li Z P. Research on the Technology of Arc Suppression of 270V Aviation DC Circuit Breaker [Dissertation]. Tianjin: Hebei University of Technology, 2015
    [55]
    李超. 270V橋式觸點直流分斷電弧抑制因素的實驗研究 [學位論文]. 天津: 河北工業大學, 2016

    Li C. Research on Breaking Arc Restraining Factors of Bridge-Type Contact under 270V and DC [Dissertation]. Tianjin: Hebei University of Technology, 2016
    [56]
    Jia B W, Wu J W, Kong G W, et al. Arc motion characteristics of H2-N2 mixed gas switch with magnetic field // Proceedings of the 4th International Conference on Electric Power Equipment - Switching Technology. Xi’an, 2017: 268
    [57]
    徐政, 肖晃慶, 徐雨哲. 直流斷路器的基本原理和實現方法研究. 高電壓技術, 2018, 44(2):347 doi: 10.13336/j.1003-6520.hve.20180131002

    Xu Z, Xiao H Q, Xu Y Z. Study on basic principle and its realization methods for DC circuit breakers. High Volt Eng, 2018, 44(2): 347 doi: 10.13336/j.1003-6520.hve.20180131002
    [58]
    Song X C, Shi Z Q, Liu C, et al. Experimental investigation on the characteristics of drawn vacuum arc in initial expanding stage and in forced current-zero stage. IEEE Trans Plasma Sci, 2011, 39(6): 1330 doi: 10.1109/TPS.2011.2131688
    [59]
    Liu B, Wu J W, Xin C. Study on dynamic characteristic in force interrupted DC vacuum arc. IEEE Trans Plasma Sci, 2014, 42(10): 2382 doi: 10.1109/TPS.2014.2334639
    [60]
    Liu B, Wu J W, Xin C, et al. Research on the reignition condition for DC arc forcing interruption // Proceedings of the 25th International Symposium on Discharges and Electrical Insulation in Vacuum. Tomsk, 2012: 169
    [61]
    Liu L H, Zhuang J W, Wang C, et al. A hybrid DC vacuum circuit breaker for medium voltage: Principle and first measurements. IEEE Trans Power Deliv, 2015, 30(5): 2096 doi: 10.1109/TPWRD.2014.2384023
    [62]
    劉偉, 馬海超, 張海濤, 等. 配電網用全固態混合式直流斷路器研發. 南方電網技術, 2016, 10(4):37 doi: 10.13648/j.cnki.issn1674-0629.2016.04.006

    Liu W, Ma H C, Zhang H T, et al. Development of solid hybrid DC circuit breaker for DC distribution network. South Power Syst Technol, 2016, 10(4): 37 doi: 10.13648/j.cnki.issn1674-0629.2016.04.006
    [63]
    蒙凱. 270V直流固態功率控制器研究 [學位論文]. 西安: 西安電子科技大學, 2019

    Meng K. Research on 270V DC Solid-State Power Controller [Dissertation]. Xi’an: Xidian University, 2019
    [64]
    霍文磊, 武建文, 李德閣, 等. 航空270V混合式斷路器分斷瞬態特性及實驗研究. 中國電機工程學報, 2017, 37(4):1062 doi: 10.13334/j.0258-8013.pcsee.161301

    Huo W L, Wu J W, Li D G, et al. Interruption transient characteristics and experimental research of aero 270V DC hybrid breaker. Proc CSEE, 2017, 37(4): 1062 doi: 10.13334/j.0258-8013.pcsee.161301
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (531) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频