Citation: | YANG Xiao-bing, YAN Ze-peng, YIN Sheng-hua, LI Wei-guang, GAO Qian. Development of steel-slag-based cementitious material and optimization of slurry ratio based on genetic algorithm and support vector machine (GA?SVM)[J]. Chinese Journal of Engineering, 2022, 44(11): 1897-1908. doi: 10.13374/j.issn2095-9389.2022.02.25.001 |
[1] |
李夕兵, 周健, 王少鋒, 等. 深部固體資源開采評述與探索. 中國有色金屬學報, 2017, 27(6):1236 doi: 10.19476/j.ysxb.1004.0609.2017.06.021
Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236 doi: 10.19476/j.ysxb.1004.0609.2017.06.021
|
[2] |
Kesimal A, Yilmaz E, Ercikdi B. Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents. Cem Concr Res, 2004, 34(10): 1817 doi: 10.1016/j.cemconres.2004.01.018
|
[3] |
尹升華, 劉家明, 陳威, 等. 不同粗骨料對膏體凝結性能的影響及配比優化. 工程科學學報, 2020, 42(7):829
Yin S H, Liu J M, Chen W, et al. Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation. Chin J Eng, 2020, 42(7): 829
|
[4] |
Yang X B, Xiao B L, Gao Q, et al. Determining the pressure drop of cemented Gobi sand and tailings paste backfill in a pipe flow. Constr Build Mater, 2020, 255: 119371 doi: 10.1016/j.conbuildmat.2020.119371
|
[5] |
張連富, 吳愛祥, 王洪江. 泵送劑對高含泥膏體流變特性影響及機理. 工程科學學報, 2018, 40(8):918
Zhang L F, Wu A X, Wang H J. Effects and mechanism of pumping agent on rheological properties of highly muddy paste. Chin J Eng, 2018, 40(8): 918
|
[6] |
Tilmaz E, Belem T, Benzaazoua M, et al. Assessment of the modified CUAPS apparatus to estimate in situ properties of cemented paste backfill. Geotech Test J, 2010, 33(5): 351
|
[7] |
韋寒波, 巴蕾, 溫震江, 等. 基于熵權多屬性決策的鎂渣膠結料開發及料漿配比優化. 中國有色金屬學報,https://kns.cnki.net/kcms/detail/43.1238.tg.20210902.1616.009.html
Wei H B, Ba L, Wen Z J, et al. Development of magnesium slag binder and optimization of slurry ratio based on entropy weight multi-attribute decision. Chin J Nonferrous Met,https://kns.cnki.net/kcms/detail/43.1238.tg.20210902.1616.009.html
|
[8] |
楊曉炳. 低品質多固廢協同制備充填料漿及其管輸阻力研究[學位論文]. 北京: 北京科技大學, 2020
Yang X B. Study on the Collaborative Preparation of Filling Materials with Low Quality and Multi-Solid Wastes and Their Pressure Drop in Pipeline Transportation [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
|
[9] |
Shi C J, Qian J S. High performance cementing materials from industrial slags—a review. Resour Conserv Recycl, 2000, 29(3): 195 doi: 10.1016/S0921-3449(99)00060-9
|
[10] |
Flatt R J, Roussel N, Cheeseman C R. Concrete: An eco material that needs to be improved. J Eur Ceram Soc, 2012, 32(11): 2787 doi: 10.1016/j.jeurceramsoc.2011.11.012
|
[11] |
Gijbels K, Iacobescu R I, Pontikes Y, et al. Alkali-activated binders based on ground granulated blast furnace slag and phosphogypsum. Constr Build Mater, 2019, 215: 371 doi: 10.1016/j.conbuildmat.2019.04.194
|
[12] |
Jiang H Q, Qi Z J, Yilmaz E, et al. Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills. Constr Build Mater, 2019, 218: 689 doi: 10.1016/j.conbuildmat.2019.05.162
|
[13] |
Gorai B, Jana R K, Premchand. Characteristics and utilisation of copper slag—a review. Resour Conserv Recycl, 2003, 39(4): 299 doi: 10.1016/S0921-3449(02)00171-4
|
[14] |
吳凡, 楊發光, 肖柏林, 等. 鋼渣摻量對膏體早期強度及流變特性的影響. 材料導報, 2021, 35(3):3021 doi: 10.11896/cldb.20050029
Wu F, Yang F G, Xiao B L, et al. Influence of steel slag dosage on early age strength and rheological properties of paste. Mater Rep, 2021, 35(3): 3021 doi: 10.11896/cldb.20050029
|
[15] |
Teng S, Lim T Y D, Sabet Divsholi B. Durability and mechanical properties of high strength concrete incorporating ultra fine Ground Granulated Blast-furnace Slag. Constr Build Mater, 2013, 40: 875 doi: 10.1016/j.conbuildmat.2012.11.052
|
[16] |
肖柏林, 苗勝軍, 高謙, 等. 冶金渣膠結材料對超細全尾砂的固化特性研究. 中國有色金屬學報,http://kns.cnki.net/kcms/detail/43.1238.TG.20210820.1435.011.html
Xiao B L, Miao S J, Gao Q, et al. Study on solidification characteristics of metallurgical slag binder materials for ultra-fine tailings backfill. Chin J Nonferrous Met,http://kns.cnki.net/kcms/detail/43.1238.TG.20210820.1435.011.html
|
[17] |
Qi C C, Fourie A, Chen Q S, et al. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill. J Clean Prod, 2018, 183: 566 doi: 10.1016/j.jclepro.2018.02.154
|
[18] |
楊嘯, 楊志強, 高謙, 等. 混合充填骨料膠結充填強度試驗與最優配比決策研究. 巖土力學, 2016, 37(增刊2): 635
Yang X, Yang Z Q, Gao Q, et al. Cemented filling strength test and optimal proportion decision of mixed filling aggregate. Rock Soil Mech, 2016, 37(Suppl 2): 635
|
[19] |
馬修元, 段鈺鋒, 劉猛, 等. 基于PSO-BP神經網絡的水焦漿管道壓降預測. 中國電機工程學報, 2012, 32(5):54 doi: 10.13334/j.0258-8013.pcsee.2012.05.005
Ma X Y, Duan Y F, Liu M, et al. Prediction of pressure drop of coke water slurry flowing in pipeline by PSO-BP neural network. Proc CSEE, 2012, 32(5): 54 doi: 10.13334/j.0258-8013.pcsee.2012.05.005
|
[20] |
Pourbasheer E, Riahi S, Ganjali M R, et al. Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity. Eur J Med Chem, 2009, 44(12): 5023 doi: 10.1016/j.ejmech.2009.09.006
|
[21] |
馬礪, 張鵬宇, 郭睿智, 等. 巷道火災密閉過程煙氣溫度預測的GA-SVM模型. 中國礦業大學學報, 2021, 50(4):641 doi: 10.13247/j.cnki.jcumt.001309
Ma L, Zhang P Y, Guo R Z, et al. GA-SVM model for prediction flue gas temperature of roadway fire under sealing process. J China Univ Min Technol, 2021, 50(4): 641 doi: 10.13247/j.cnki.jcumt.001309
|
[22] |
畢娟, 李希建. 基于博弈論組合賦權灰靶模型的煤礦安全綜合評價. 中國安全生產科學技術, 2019, 15(7):113 doi: 10.11731/j.issn.1673-193x.2019.07.018
Bi J, Li X J. Comprehensive evaluation of coal mine safety based on grey target model with combination weighting of game theory. J Saf Sci Technol, 2019, 15(7): 113 doi: 10.11731/j.issn.1673-193x.2019.07.018
|
[23] |
溫震江, 高謙, 王忠紅, 等. 基于RSM-DF的礦渣膠凝材料復合激發劑配比優化. 巖石力學與工程學報, 2020, 39(增刊1): 3103
Wen Z J, Gao Q, Wang Z H, et al. Optimization of compound activator ratio of the ground granulated blast furnace slag powder cementitious material based on RSM-DF. Chin J Rock Mech Eng, 2020, 39(Suppl 1): 3103
|
[24] |
李茂輝, 楊志強, 王有團, 等. 粉煤灰復合膠凝材料充填體強度與水化機理研究. 中國礦業大學學報, 2015, 44(4):650 doi: 10.13247/j.cnki.jcumt.000365
Li M H, Yang Z Q, Wang Y T, et al. Experiment study of compressive strength and mechanical property of filling body for fly ash composite cementitious materials. J China Univ Min Technol, 2015, 44(4): 650 doi: 10.13247/j.cnki.jcumt.000365
|
[25] |
董越, 楊志強, 高謙. 鋼渣取代量對復合充填膠凝材料性能的影響. 硅酸鹽通報, 2016, 35(9):2967 doi: 10.16552/j.cnki.issn1001-1625.2016.09.048
Dong Y, Yang Z Q, Gao Q. Effect of steel slag substitution on the properties of composite cementitious backfill material. Bull Chin Ceram Soc, 2016, 35(9): 2967 doi: 10.16552/j.cnki.issn1001-1625.2016.09.048
|
[26] |
崔孝煒, 倪文, 任超. 鋼渣礦渣基全固廢膠凝材料的水化反應機理. 材料研究學報, 2017, 31(9):687 doi: 10.11901/1005.3093.2016.741
Cui X W, Ni W, Ren C. Hydration mechanism of all solid waste cementitious materials based on steel slag and blast furnace slag. Chin J Mater Res, 2017, 31(9): 687 doi: 10.11901/1005.3093.2016.741
|