<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
WANG Xiao-feng, LI Hong, CAO Dong, KANG Wei, CHANG Gui-hua, DENG Zhi-yin, GU Chao. Progress in cleaning and purification of liquid steel technology based on fine heterogeneous phases[J]. Chinese Journal of Engineering, 2022, 44(9): 1538-1547. doi: 10.13374/j.issn2095-9389.2022.02.14.003
Citation: WANG Xiao-feng, LI Hong, CAO Dong, KANG Wei, CHANG Gui-hua, DENG Zhi-yin, GU Chao. Progress in cleaning and purification of liquid steel technology based on fine heterogeneous phases[J]. Chinese Journal of Engineering, 2022, 44(9): 1538-1547. doi: 10.13374/j.issn2095-9389.2022.02.14.003

Progress in cleaning and purification of liquid steel technology based on fine heterogeneous phases

doi: 10.13374/j.issn2095-9389.2022.02.14.003
More Information
  • Corresponding author: E-mail:xfwang@sust.edu.cn
  • Received Date: 2022-02-14
    Available Online: 2022-06-22
  • Publish Date: 2022-09-01
  • The production of high purity steel is a major issue for iron and steel enterprises. Obtaining bubbles with controllable size and dispersed distribution in liquid steel is an important method for removing fine inclusions and producing high-quality steel. Microheterogeneous purification of molten steel technology is a carbonate decomposition reaction-based process that generates fine bubbles and slag droplets to eradicate small inclusions. On this basis, composite spheres (powders) with various metallurgical functions are designed, and industrial field tests are carried out at ANSTEEL. The results show that the microheterogeneous purification of molten steel is a low-cost, high-efficiency, simple, and easy molten steel purification technology. The carbonate composite sphere (powder) can cause dispersion, microbubbles, and slag droplets in the molten steel. Its size is 0.02–0.2 mm, and the size distribution and slag droplet composition can be controlled. Rapid dephosphorization and slag-forward movement can be achieved by feeding composite balls during converter tapping. For low phosphorus steel, the minimum phosphorus content can reach 0.002% (in mass, the same below) and the dephosphorization efficiency is >50%. The slag-forward movement process can reduce the temperature drop during molten steel transmission, promote rapid slag formation in ladle furnace (LF) refining, increase the LF heating rate by 2 °C·min–1, and shorten the refining LF treatment cycle by 3–5 min. The addition of composite spheres in the Rheinstahl–Heraeus (RH) refining process can remove fine inclusions and provide deep desulfurization. The inclusion of free molten steel in the interstitial can be effectively removed. Compared to conventional inclusion removal technology, the number of the oxide inclusions can be reduced, and the inclusion size becomes finer. The total oxygen (mass fraction) in the as-cast slab can approach 5×10?6 using this novel technology, and the steel production cost per ton can be reduced by 5–12 RMB. The sulfur content of ultralow carbon nonoriented silicon steel can be consistently controlled below 0.002%, and the desulfurization efficiency is >50%. Recently, the advancement of this process has piqued the attention of metallurgical workers, and some new technologies have emerged and matured. Based on the principle of microheterogeneous purification of molten steel process, this paper introduces the latest progress of microheterogeneous purification of molten steel technology in detail, summarizes the characteristics and mechanism of microheterogeneous removal of fine inclusions, desulfurization, dephosphorization, slag migration, and RH rapid decarbonization, and looks forward to the problems to be solved in the engineering field and the future developments.

     

  • loading
  • [1]
    徐匡迪. 關于潔凈鋼的若干基本問題. 金屬學報, 2009, 45(3):257 doi: 10.3321/j.issn:0412-1961.2009.03.001

    Xu K D. Certain basic subjects on clean steel. Acta Metall Sin, 2009, 45(3): 257 doi: 10.3321/j.issn:0412-1961.2009.03.001
    [2]
    Steneholm K, Andersson N A I, Tilliander A, et al. The role of process control on the steel cleanliness. Ironmak Steelmak, 2018, 45(2): 114 doi: 10.1080/03019233.2016.1245917
    [3]
    Zhang L F, Ren Q, Duan H J, et al. Modelling of non-metallic inclusions in steel. Miner Process Extr Metall, 2020, 129(2): 184
    [4]
    Sahai Y. Tundish technology for casting clean steel: A review. Metall Mater Trans B, 2016, 47(4): 2095 doi: 10.1007/s11663-016-0648-3
    [5]
    劉威, 楊樹峰, 李京社. 鋼–渣界面非金屬夾雜物運動行為研究進展. 工程科學學報, 2021, 43(12):1647

    Liu W, Yang S F, Li J S. Review of research on inclusion motion behaviors at the steel–slag interface. Chin J Eng, 2021, 43(12): 1647
    [6]
    Kaushik P, Lowry M, Yin H, et al. Inclusion characterisation for clean steelmaking and quality control. Ironmak Steelmak, 2012, 39(4): 284 doi: 10.1179/1743281211Y.0000000069
    [7]
    顧超, 王仲亮, 肖微, 等. 高疲勞壽命軸承鋼潔凈度現狀及研究進展. 工程科學學報, 2021, 43(3):299

    Gu C, Wang Z L, Xiao W, et al. Research status and progress on cleanliness of high-fatigue-life bearing steels. Chin J Eng, 2021, 43(3): 299
    [8]
    劉建華, 張杰, 李康偉. 氣泡去除夾雜物技術研究現狀及發展趨勢. 煉鋼, 2017, 33(2):1

    Liu J H, Zhang J, Li K W. Current state and prospect of technologies for removing inclusion by bubbles. Steelmaking, 2017, 33(2): 1
    [9]
    薛正良, 王義芳, 王立濤, 等. 用小氣泡從鋼液中去除夾雜物顆粒. 金屬學報, 2003, 39(4):431 doi: 10.3321/j.issn:0412-1961.2003.04.019

    Xue Z L, Wang Y F, Wang L T, et al. Inclusion removal from molten steel by attachment small bubbles. Acta Met Sin, 2003, 39(4): 431 doi: 10.3321/j.issn:0412-1961.2003.04.019
    [10]
    Kaushik P, Lehmann J, Nadif M. State of the art in control of inclusions, their characterization, and future requirements. Metall Mater Trans B, 2012, 43(4): 710 doi: 10.1007/s11663-012-9646-2
    [11]
    Duan H J, Scheller P R, Ren Y, et al. Fluid flow and inclusion behavior around spherical-cap bubbles. JOM, 2019, 71(1): 69 doi: 10.1007/s11837-018-3193-5
    [12]
    Lai Q R, Luo Z G, Hou Q F, et al. Numerical study of inclusion removal in steel continuous casting mold considering interactions between bubbles and inclusions. ISIJ Int, 2018, 58(11): 2062 doi: 10.2355/isijinternational.ISIJINT-2018-319
    [13]
    Zheng X F, Hayes P C, Lee H G. Particle removal from liquid phase using fine gas bubbles. ISIJ Int, 1997, 37(11): 1091 doi: 10.2355/isijinternational.37.1091
    [14]
    曾俊, 代開舉, 薛飛, 等. 中間包底吹氣正交試驗數值模擬研究. 連鑄, 2017, 42(4):6 doi: 10.13228/j.boyuan.issn1005-4006.20170049

    Zeng J, Dai K J, Xue F, et al. Numerical simulation investigation of orthogonal experiment in tundish with bottom gas blowing. Continuous Cast, 2017, 42(4): 6 doi: 10.13228/j.boyuan.issn1005-4006.20170049
    [15]
    Yang B, Lei H, Bi Q, et al. Numerical simulation of collision-coalescence and removal of inclusions in a tundish. JOM, 2018, 70(12): 2950 doi: 10.1007/s11837-018-3061-3
    [16]
    Zhang Q, Wang L, Xu Z. A new method of removing inclusions in molten steel by injecting gas from the shroud. ISIJ Int, 2006, 46(8): 1177 doi: 10.2355/isijinternational.46.1177
    [17]
    Chang S, Cao X K, Zou Z S. Regimes of micro-bubble formation using gas injection into ladle shroud. Metall Mater Trans B, 2018, 49(3): 953 doi: 10.1007/s11663-018-1231-x
    [18]
    唐萍, 周海, 李敬想, 等. 鋼包底吹氬鋼液流動行為與夾雜去除率的關系. 過程工程學報, 2015, 15(5):744 doi: 10.12034/j.issn.1009-606X.215264

    Tang P, Zhou H, Li J X, et al. Relationship between flow behavior of molten steel and inclusion removal rate in ladle with bottom argon blowing. Chin J Process Eng, 2015, 15(5): 744 doi: 10.12034/j.issn.1009-606X.215264
    [19]
    劉風剛, 任英, 段豪劍, 等. 鋼包軟吹過程優化數學模擬和工業試驗研究. 煉鋼, 2019, 35(6):24

    Liu F G, Ren Y, Duan H J, et al. Mathematical simulation and plant trial on soft blowing process of ladle furnace. Steelmaking, 2019, 35(6): 24
    [20]
    Lou W T, Zhu M Y. Numerical simulations of inclusion behavior and mixing phenomena in gas-stirred ladles with different arrangement of tuyeres. ISIJ Int, 2014, 54(1): 9 doi: 10.2355/isijinternational.54.9
    [21]
    張杰, 劉建華, 閆柏軍, 等. 增氮析氮法去除硅錳脫氧鋼中夾雜物的研究. 工程科學學報, 2018, 40(8):937

    Zhang J, Liu J H, Yan B J, et al. Study on removing inclusions in silicon manganese deoxidized steel by increasing nitrogen and separating out nitrogen. Chin J Eng, 2018, 40(8): 937
    [22]
    Matsuno H, Kikuchi Y, Arai M, et al. Mechanism of deoxidation with degassing of soluble gas from molten steel. Tetsu-to-Hagane, 1999, 85(7): 514 doi: 10.2355/tetsutohagane1955.85.7_514
    [23]
    Li K W, Liu J H, Zhang J, et al. Theoretical analysis of bubble nucleation in molten steel supersaturated with nitrogen or hydrogen. Metall Mater Trans B, 2017, 48(4): 2136 doi: 10.1007/s11663-017-0993-x
    [24]
    劉建華, 李康偉, 沈少波, 等. 鋼液/(N2、H2)過飽和體系中氣泡生長的數值分析. 工程科學學報, 2016, 38(5):630

    Liu J H, Li K W, Shen S B, et al. Numerical analysis of bubble growth in a molten steel/(N2, H2) supersaturation system. Chin J Eng, 2016, 38(5): 630
    [25]
    申永剛, 陳偉慶, 馬新建. 超聲與吹氬處理對鋼液中夾雜物去除效果的對比研究. 北京科技大學學報, 2010, 32(7):855 doi: 10.13374/j.issn1001-053x.2010.07.019

    Shen Y G, Chen W Q, Ma X J. Comparative study on inclusion removal efficiency in molten steel treated by ultrasonic and argon-blowing. J Univ Sci Technol Beijing, 2010, 32(7): 855 doi: 10.13374/j.issn1001-053x.2010.07.019
    [26]
    常立忠, 施曉芳, 王建軍, 等. 超聲波功率對電渣鋼錠中氧化鋁夾雜物分布的影響. 過程工程學報, 2015, 15(1):79

    Chang L Z, Shi X F, Wang J J, et al. Effect of ultrasonic power on distribution of Al2O3 inclusions in ESR ingots. Chin J Process Eng, 2015, 15(1): 79
    [27]
    Kang S, Shen M. Numerical simulation and cold model experiments on ladle furnace by ultrasonic. Appl Mech Mater, 2014, 633-634: 176 doi: 10.4028/www.scientific.net/AMM.633-634.176
    [28]
    Duan H J, Ren Y, Zhang L F. Inclusion capture probability prediction model for bubble floatation in turbulent steel flow. Metall Mater Trans B, 2019, 50(1): 16 doi: 10.1007/s11663-018-1462-x
    [29]
    Furumai K, Murai T, Aramaki N, et al. Effect of gas flow rate, bubble size and inclusion size on inclusion removal under high throughput conditions using water model experiment. Tetsu-to-Hagane, 2017, 103(9): 517 doi: 10.2355/tetsutohagane.TETSU-2017-014
    [30]
    耿佃橋, 包金峰, 雷洪, 等. 鋼液內氣泡尾渦去除夾雜物的物理模擬. 東北大學學報(自然科學版), 2016, 37(12):1731 doi: 10.12068/j.issn.1005-3026.2016.12.013

    Geng D Q, Bao J F, Lei H, et al. Physical simulation of inclusion removal by bubble trailing vortex in liquid steel. J Northeast Univ (Nat Sci), 2016, 37(12): 1731 doi: 10.12068/j.issn.1005-3026.2016.12.013
    [31]
    王國承, 周海忱, 劉發友, 等. 鋼包內氣泡的形成與運動過程的數值模擬. 鋼鐵, 2017, 52(5):24 doi: 10.13228/j.boyuan.issn0449-749x.20160370

    Wang G C, Zhou H C, Liu F Y, et al. Numerical simulation of bubble formation and motion process in ladle refining. Iron Steel, 2017, 52(5): 24 doi: 10.13228/j.boyuan.issn0449-749x.20160370
    [32]
    Arai H, Matsumoto K, Shimasaki S I, et al. Model experiment on inclusion removal by bubble flotation accompanied by particle coagulation in turbulent flow. ISIJ Int, 2009, 49(7): 965 doi: 10.2355/isijinternational.49.965
    [33]
    Mazumdar D, Guthrie R I L. The physical and mathematical modelling of gas stirred ladle systems. ISIJ Int, 1995, 35(1): 1 doi: 10.2355/isijinternational.35.1
    [34]
    Tang F P, Wang X F, Li Z, et al. Novel concept of cleansing IF molten steel with dispersed in situ phase induced by composite ball explosive reaction in RH ladles. Ironmak Steelmak, 2011, 38(4): 285 doi: 10.1179/1743281210Y.0000000010
    [35]
    Tang F P, Li Z, Wang X F, et al. Cleaning IF molten steel with dispersed in-situ heterophases induced by the composite sphere explosive reaction in RH ladles. Int J Miner Metall Mater, 2011, 18(2): 144 doi: 10.1007/s12613-011-0414-0
    [36]
    Wang X F, Yuan S Y, Tang F P, et al. A new approach to inclusion removal using fine gas bubbles during IF steel production. Ironmak Steelmak, 2020, 48(10): 1
    [37]
    Wang X F, Tang F P, Li Z, et al. Development of a high-efficiency dephosphorization process via the fine in situ phases due to the composite ball explosion. Ironmak Steelmak, 2021, 48(1): 1 doi: 10.1080/03019233.2021.1882647
    [38]
    Wang X F, Tang F P, Li Z, et al. Desulphurisation with dispersed in situ phases induced by composite ball explosive reaction during ultra-low carbon steel production in RH degasser. Ironmak Steelmak, 2021(2): 1
    [39]
    Wang X F, Tang F P, Lin Y, et al. Development of novel RH degassing process with powder injection through snorkel nozzles. Ironmak Steelmak, 2014, 41(9): 694 doi: 10.1179/1743281214Y.0000000184
    [40]
    Wang X F, Tang F P, Yao W Z, et al. Novel concept of fine inclusion removal using carbonate powder injection through the ladle shroud. Ironmak Steelmak, 2019, 46(6): 1
    [41]
    Turkdogan E T. Novel concept of cleansing liquid steel of solid oxide inclusions by cullet injection in ladle. Ironmak Steelmak, 2004, 31(2): 131 doi: 10.1179/030192304225011061
    [42]
    王曉峰, 唐復平, 李鎮, 等. 反應誘發微小異相凈化鋼水技術. 鋼鐵, 2014, 49(10):18 doi: 10.13228/j.boyuan.issn0449-749x.20130521

    Wang X F, Tang F P, Li Z, et al. Technology of inducing dispersed In-situ phase by composite ball explosion reaction. Iron Steel, 2014, 49(10): 18 doi: 10.13228/j.boyuan.issn0449-749x.20130521
    [43]
    唐復平, 李鎮, 王曉峰, 等. 反應誘發微小異相去除鋼液中細小夾雜物技術研究. 鋼鐵, 2010, 45(8):28 doi: 10.13228/j.boyuan.issn0449-749x.2010.08.016

    Tang F P, Li Z, Wang X F, et al. Technical investigation on the fine inclusion removal due to the dispersed In-situ phase induced by the composite ball explosion reaction. Iron Steel, 2010, 45(8): 28 doi: 10.13228/j.boyuan.issn0449-749x.2010.08.016
    [44]
    李鎮, 王曉峰, 林洋, 等. IF鋼中細小夾雜物的控制. 鋼鐵, 2011, 46(11):26 doi: 10.13228/j.boyuan.issn0449-749x.2011.11.016

    Li Z, Wang X F, Lin Y, et al. Control of the fine inclusion in IF molten steel. Iron Steel, 2011, 46(11): 26 doi: 10.13228/j.boyuan.issn0449-749x.2011.11.016
    [45]
    唐復平, 李鎮, 王曉峰, 等. 反應誘發微小異相凈化鋼水. 北京科技大學學報, 2009, 31(10):1235

    Tang F P, Li Z, Wang X F, et al. Purification of liquid steel with fine heterophases induced by explosive reaction in RH ladles. J Univ Sci Technol Beijing, 2009, 31(10): 1235
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(17)

    Article views (2375) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频