Citation: | SUN Yan-guo, XU Cheng-shun, DU Xiu-li, WANG Pi-guang, XI Ren-qiang, SUN Yi-long. Bearing characteristics of pile–bucket composite foundations for offshore wind turbines[J]. Chinese Journal of Engineering, 2023, 45(3): 489-498. doi: 10.13374/j.issn2095-9389.2022.02.11.001 |
[1] |
Sun X J, Huang D G, Wu Jpomg Q. The Current state of offshore wind energy technology development. Energy, 2012, 41(1): 298 doi: 10.1016/j.energy.2012.02.054
|
[2] |
Zou C N, Xiong B, Xue H Q, et al. The role of new energy in carbon neutral. Petroleum Explor Dev, 2021, 48(2): 480 doi: 10.1016/S1876-3804(21)60039-3
|
[3] |
Esteban M D, Diez J J, López J S, et al. Why offshore wind energy? Renew Energy, 2011, 36(2): 444
|
[4] |
Díaz H, Soares C G. Review of the current status, technology and future trends of offshore wind farms. Ocean Eng, 2020, 209: 107381 doi: 10.1016/j.oceaneng.2020.107381
|
[5] |
Veers P, Dykes K, Lantz E, et al. Grand challenges in the science of wind energy. Science, 2019, 366(6464): eaau2027 doi: 10.1126/science.aau2027
|
[6] |
Desmond C, Murphy J, Blonk L, et al. Description of an 8 MW reference wind turbine. J Phys:Conf Ser, 2016, 753: 092013 doi: 10.1088/1742-6596/753/9/092013
|
[7] |
孔德森, 劉一, 鄧美旭, 等. 非均質土中海上風電單樁基礎動力響應特性. 工程科學學報, 2021, 43(5):710
Kong D S, Liu Y, Deng M X, et al. Dynamic response characteristics of an offshore, wind-power monopile foundation in heterogeneous soil. Chin J Eng, 2021, 43(5): 710
|
[8] |
宋波, 趙偉娜, 雙妙. 沖刷深度對海上風電塔地震動力響應的影響分析. 工程科學學報, 2019, 41(10):1351
Song B, Zhao W N, Shuang M. Analysis of the influence of scour depth on the dynamic response of offshore wind turbine towers under earthquake action. Chin J Eng, 2019, 41(10): 1351
|
[9] |
Faizi K, Faramarzi A, Dirar S, et al. Investigating the monotonic behaviour of hybrid tripod suction bucket foundations for offshore wind towers in sand. Appl Ocean Res, 2019, 89: 176 doi: 10.1016/j.apor.2019.05.018
|
[10] |
Yang Q, Yu P, Liu Y F, et al. Scour characteristics of an offshore umbrella suction anchor foundation under the combined actions of waves and currents. Ocean Eng, 2020, 202: 106701 doi: 10.1016/j.oceaneng.2019.106701
|
[11] |
Li H J, Liu H J, Liu S Y. Dynamic analysis of umbrella suction anchor foundation embedded in seabed for offshore wind turbines. Geomech Energy Environ, 2017, 10: 12 doi: 10.1016/j.gete.2017.05.002
|
[12] |
Wang X F, Zeng X W, Yang X, et al. Feasibility study of offshore wind turbines with hybrid monopile foundation based on centrifuge modeling. Appl Energy, 2018, 209: 127 doi: 10.1016/j.apenergy.2017.10.107
|
[13] |
朱東劍. 筒型基礎與單樁相結合的新型復合風電基礎研究[學位論文]. 天津: 天津大學, 2012
Zhu D J. Research of a New Type of Foundation for Offshore Wind Turbines with the Combining of Monoplie Foundation and Bucket Foundation [Dissertation]. Tianjin: Tianjin University, 2012
|
[14] |
劉潤, 李寶仁, 練繼建, 等. 海上風電單樁復合筒型基礎樁筒共同承載機制研究. 天津大學學報(自然科學與工程技術版), 2015, 48(5):429
Liu R, Li B R, Lian J J, et al. Bearing characteristics of pile–bucket composite foundation for offshore wind turbine. J Tianjin Univ (Sci Technol)
|
[15] |
劉潤, 祁越, 李寶仁, 等. 復合加載模式下單樁復合筒型基礎地基承載力包絡線研究. 巖土力學, 2016, 37(5):1486 doi: 10.16285/j.rsm.2016.05.033
Liu R, Qi Y, Li B R, et al. Failure envelopes of single-pile composite bucket foundation of offshore wind turbine under combined loading conditions. Rock Soil Mech, 2016, 37(5): 1486 doi: 10.16285/j.rsm.2016.05.033
|
[16] |
Wang J Y, Sun G D, Chen G S, et al. Finite element analyses of improved lateral performance of monopile when combined with bucket foundation for offshore wind turbines. Appl Ocean Res, 2021, 111: 102647 doi: 10.1016/j.apor.2021.102647
|
[17] |
Chen D, Gao P, Huang S S, et al. Static and dynamic loading behavior of a hybrid foundation for offshore wind turbines. Mar Struct, 2020, 71: 102727 doi: 10.1016/j.marstruc.2020.102727
|
[18] |
劉紅軍, 張鵬, 王荃迪, 等. 樁筒復合基礎筒體結構優化及承載性能分析. 哈爾濱工程大學學報, 2018, 39(7):1165 doi: 10.11990/jheu.201701022
Liu H J, Zhang P, Wang Q D, et al. Optimum structural design and loading advantage analysis of pile–bucket foundation. J Harbin Eng Univ, 2018, 39(7): 1165 doi: 10.11990/jheu.201701022
|
[19] |
Li X Y, Zeng X W, Wang X F. Feasibility study of monopile-friction wheel-bucket hybrid foundation for offshore wind turbine. Ocean Eng, 2020, 204: 107276 doi: 10.1016/j.oceaneng.2020.107276
|
[20] |
Mehravar M, Harireche O, Faramarzi A. Evaluation of undrained failure envelopes of caisson foundations under combined loading. Appl Ocean Res, 2016, 59: 129 doi: 10.1016/j.apor.2016.05.001
|
[21] |
Hung L C, Kim S R. Evaluation of combined horizontal-moment bearing capacities of tripod bucket foundations in undrained clay. Ocean Eng, 2014, 85: 100 doi: 10.1016/j.oceaneng.2014.04.025
|
[22] |
Yun G, Bransby M F. The horizontal-moment capacity of embedded foundations in undrained soil. Can Geotech J, 2007, 44(4): 409 doi: 10.1139/t06-126
|
[23] |
Hung L C, Kim S R. Evaluation of undrained bearing capacities of bucket foundations under combined loads. Mar Georesources Geotechnol, 2014, 32(1): 76 doi: 10.1080/1064119X.2012.735346
|
[24] |
肖忠, 王琰, 王元戰, 等. 桶間距對四桶吸力式基礎各單向承載力的影響及最優間距的確定. 巖土力學, 2018, 39(10):3603 doi: 10.16285/j.rsm.2017.2277
Xiao Z, Wang Y, Wang Y Z, et al. Effect of bucket separation distance on bearing capacity of tetrapod bucket foundations and determination of optimal separation distance. Rock Soil Mech, 2018, 39(10): 3603 doi: 10.16285/j.rsm.2017.2277
|
[25] |
Hung L C, Kim S R. Evaluation of vertical and horizontal bearing capacities of bucket foundations in clay. Ocean Eng, 2012, 52: 75 doi: 10.1016/j.oceaneng.2012.06.001
|
[26] |
Butterfield R, Houlsby G T, Gottardi G. Standardized sign conventions and notation for generally loaded foundations. Géotechnique, 1997, 47(5): 1051
|
[27] |
Byrne B W, Cassidy M J. Investigating the response of offshore foundations in soft clay soils // Proceedings of ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo, 2009: 263
|
[28] |
任露泉. 試驗設計及其優化. 北京: 科學出版社, 2009
Ren L Q. Experimental Design and Optimization. Beijing: Science Press, 2009
|