<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
ZHANG Xin, ZHANG Mei, GUO Min. Advances and trends in high-temperature modification–crystallization control detoxification of stainless steel slag[J]. Chinese Journal of Engineering, 2023, 45(4): 577-589. doi: 10.13374/j.issn2095-9389.2022.02.10.003
Citation: ZHANG Xin, ZHANG Mei, GUO Min. Advances and trends in high-temperature modification–crystallization control detoxification of stainless steel slag[J]. Chinese Journal of Engineering, 2023, 45(4): 577-589. doi: 10.13374/j.issn2095-9389.2022.02.10.003

Advances and trends in high-temperature modification–crystallization control detoxification of stainless steel slag

doi: 10.13374/j.issn2095-9389.2022.02.10.003
More Information
  • Corresponding author: E-mail: guomin@ustb.edu.cn
  • Received Date: 2022-02-10
    Available Online: 2022-03-30
  • Publish Date: 2023-04-01
  • To date, the recycling technology of common solid waste (blast furnace iron slag) in the iron and steel industry has made important progress. However, persisting, stubborn solid waste problems urgently need to be solved. With the continuous growth of stainless steel production in China, the total amount of stainless steel slag has reached more than 10 million tons. This slag contains a lot of CaO, MgO, and SiO2, which are suitable building material additives. However, the harmful element chromium (Cr) in the slag and the dissolution characteristics of Cr6+ ions limit its large-scale application. For a long time, no effective, harmless disposal method has been available for Cr-containing slag, which brings great hidden danger to the environment. Given the characteristics of stainless steel slag, the current detoxification methods mainly include the solidification method, wet reduction, high-temperature ferrosilicon reduction, and high-temperature modification–crystallization control processes. Among these methods, high-temperature modification–crystallization control can promote Cr-containing spinel phase formation by adjusting steel slag compositions (e.g., basicity and oxidation-reduction properties) to improve the enrichment degree of Cr in the spinel phase. At the same time, by adjusting the slag cooling system (e.g., the quenching temperature and holding time) and reducing the slag viscosity, the nucleation and growth of the Cr-containing spinel phase can be improved, the precipitation amounts of the spinel phase are increased, and the occurrence probability of chromium in the matrix phase is reduced; thus, the detoxification of stainless steel slag can be achieved. Compared with the other three detoxification treatment methods, high-temperature modification–crystallization control has the advantages of a simple process, stable treatment effect, and large scale. In particular, solid wastes containing silicon, aluminum, and magnesium can be used as additives to adjust the composition of steel slag to realize a coordinated treatment of various solid wastes, which has very high economic value. In addition, using waste heat to modify steel slag directly after slag picking can substantially reduce energy consumption, should become one of the most promising harmless treatment approaches, and has recently attracted extensive attention. In this paper, the research progress of high-temperature modification and detoxification of stainless steel slag is reviewed according to its thermodynamic mechanism and crystallization kinetics principles. On the basis of the core problem of melt modification-selective crystallization, the methods and measures for improving the detoxification effect are emphasized. In addition, aiming at the existing problems in the high-temperature modification–crystallization control detoxification of stainless steel slag, development directions are proposed.

     

  • loading
  • [1]
    趙萍. 2020年中國不銹鋼產量達3013.9萬噸[N/OL]. 中國鋼鐵新聞網 (2021-1-27) [2022-2-10]. http://www.csteelnews.com/sjzx/gsfx/202101/t20210127_46237.html

    Zhao P. China's stainless steel output reached 30.139 million tons in 2020 [N/OL]. www. csteelnews. com (2021-1-27) [2022-2-10]. http://www.csteelnews.com/sjzx/gsfx/202101/t20210127_46237.html
    [2]
    Shen H T, Forssberg E, Nordstr?m U. Physicochemical and mineralogical properties of stainless steel slags oriented to metal recovery. Resour Conserv Recycl, 2004, 40(3): 245 doi: 10.1016/S0921-3449(03)00072-7
    [3]
    Kim G, Sohn I. Selective metal cation concentration during the solidification of stainless steel EAF dust and slag mixtures from high temperatures for increased Cr recovery. J Hazard Mater, 2018, 359: 174 doi: 10.1016/j.jhazmat.2018.07.053
    [4]
    Ouyang S L, Zhang Y X, Chen Y X, et al. Preparation of glass-ceramics using chromium-containing stainless steel slag: Crystal structure and solidification of heavy metal chromium. Sci Rep, 2019, 9: 1964 doi: 10.1038/s41598-018-37996-4
    [5]
    程志旺, 許勇. 不銹鋼冶煉工藝技術. 特鋼技術, 2011, 17(1):1

    Cheng Z W, Xu Y. Process technology of stainless steel smelting. Special Steel Technol, 2011, 17(1): 1
    [6]
    操龍虎. 不銹鋼渣中鉻的富集及穩定化控制研究[學位論文]. 沈陽: 東北大學, 2018

    Cao L H. Study on the Enrichment and Stabilization of Chromium in Stainless Steel Slag [Dissertation]. Shenyang: Northeastern University, 2018
    [7]
    白智韜. 高碳鉻鐵渣制備微晶玻璃及其性能的基礎研究[學位論文]. 北京: 北京科技大學, 2017

    Bai Z T. Preparation and Characterization on the High-Carbon Ferrochromium Slag-based Glass-ceramics [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
    [8]
    賈志恒. 含鉻微晶玻璃制備過程中鉻的賦存狀態及分布行為研究[學位論文]. 贛州: 江西理工大學, 2020

    Jia Z H. Study on the Occurrence State and Distribution Behavior of Chromium in the Preparation of Chromium Containing Glass Ceramics [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2020
    [9]
    張宇軒. 礦渣微晶玻璃中重金屬鉻固化效果及其對析晶影響的研究[學位論文]. 包頭: 內蒙古科技大學, 2020

    Zhang Y X. Study on the Effect of the Crystallization and Curing Effect of Heavy Metal Cr in the Slag Glass-Ceramics [Dissertation]. Baotou: Inner Mongolia University of Science & Technology, 2020
    [10]
    Bai Z T, Qiu G B, Peng B, et al. Synthesis and characterization of glass-ceramics prepared from high-carbon ferrochromium slag. RSC Adv, 2016, 6(58): 52715 doi: 10.1039/C6RA06245H
    [11]
    Huang Q F, Yang Y F, Wang Q. Potential for serious environmental threats from uncontrolled Co-processing of wastes in cement kilns. Environ Sci Technol, 2012, 46(24): 13031 doi: 10.1021/es3042274
    [12]
    Lind B B, F?llman A M, Larsson L B. Environmental impact of ferrochrome slag in road construction. Waste Manage, 2001, 21(3): 255 doi: 10.1016/S0956-053X(00)00098-2
    [13]
    Sheen Y N, Wang H Y, Sun T H. A study of engineering properties of cement mortar with stainless steel oxidizing slag and reducing slag resource materials. Constr Build Mater, 2013, 40: 239 doi: 10.1016/j.conbuildmat.2012.09.078
    [14]
    Park D, Lim S R, Lee H W, et al. Mechanism and kinetics of Cr(VI) reduction by waste slag generated from iron making industry. Hydrometallurgy, 2008, 93(1-2): 72 doi: 10.1016/j.hydromet.2008.03.003
    [15]
    Wang T G, Li Z H. Some thermodynamic properties of calcium chromate. J Chem Eng Data, 2004, 49(5): 1300 doi: 10.1021/je049968r
    [16]
    Estokova A, Palascakova L, Kanuchova M. Study on Cr(VI) leaching from cement and cement composites. Int J Environ Res Public Health, 2018, 15(4): 824 doi: 10.3390/ijerph15040824
    [17]
    Rosales J, Cabrera M, Agrela F. Effect of stainless steel slag waste as a replacement for cement in mortars. Mechanical and statistical study. Constr Build Mater, 2017, 142: 444 doi: 10.1016/j.conbuildmat.2017.03.082
    [18]
    趙慶忠, 李俊國, 曾亞南, 等. 堿性條件下不銹鋼渣中鉻的氧化行為熱力學. 環境保護科學, 2020, 46(6):173 doi: 10.16803/j.cnki.issn.1004-6216.2020.06.029

    Zhao Q Z, Li J G, Zeng Y N, et al. Thermodynamics of chromium oxidation of stainless steel slag under alkaline condition. Environ Prot Sci, 2020, 46(6): 173 doi: 10.16803/j.cnki.issn.1004-6216.2020.06.029
    [19]
    高志遠, 李俊國, 劉寶, 等. EAF渣礦相組成及其短期淋溶特性. 工業安全與環保, 2017, 43(11):80 doi: 10.3969/j.issn.1001-425X.2017.11.021

    Gao Z Y, Li J G, Liu B, et al. Mineralogical composition of EAF slag and its short-term leaching characteristics. Ind Saf Environ Prot, 2017, 43(11): 80 doi: 10.3969/j.issn.1001-425X.2017.11.021
    [20]
    Adegoloye G, Beaucour A L, Ortola S, et al. Mineralogical composition of EAF slag and stabilised AOD slag aggregates and dimensional stability of slag aggregate concretes. Constr Build Mater, 2016, 115: 171 doi: 10.1016/j.conbuildmat.2016.04.036
    [21]
    Engstr?m F, Adolfsson D, Yang Q, et al. Crystallization behaviour of some steelmaking slags. Steel Res Int, 2010, 81(5): 362 doi: 10.1002/srin.200900154
    [22]
    Mostafaee S, Andersson M, J?nsson P G. Petrographical study of microstructural evolution of EAF duplex stainless steelmaking slags. Ironmak Steelmak, 2011, 38(2): 90 doi: 10.1179/030192310X12731438631769
    [23]
    王亞軍, 李俊國, 鄭娜. AOD不銹鋼渣礦相組成及其顯微形貌. 鋼鐵釩鈦, 2013, 34(4):68 doi: 10.7513/j.issn.1004-7638.2013.04.013

    Wang Y J, Li J G, Zheng N. Mineral compositions and microstructures of AOD stainless steel slag. Iron Steel Vanadium Titanium, 2013, 34(4): 68 doi: 10.7513/j.issn.1004-7638.2013.04.013
    [24]
    Li J G, Liu B, Zeng Y N, et al. Maximum availability and mineralogical control of chromium released from AOD slag. Environ Monit Assess, 2017, 189(3): 113 doi: 10.1007/s10661-017-5843-4
    [25]
    Han Z J, Holappa L. Bubble bursting phenomenon in gas/metal/slag systems. Metall Mater Trans B, 2003, 34(5): 525 doi: 10.1007/s11663-003-0020-2
    [26]
    Han Z J, Holappa L. Mechanisms of iron entrainment into slag due to rising gas bubbles. ISIJ Int, 2003, 43(3): 292 doi: 10.2355/isijinternational.43.292
    [27]
    Lee Y M, Nassaralla C L. Standard free energy of formation of calcium chromate. Mater Sci Eng A, 2006, 437(2): 334 doi: 10.1016/j.msea.2006.08.010
    [28]
    Zhao Q, Liu C J, Li B K, et al. Decomposition mechanism of chromite in sulfuric acid-dichromic acid solution. Int J Miner Metall Mater, 2017, 24(12): 1361 doi: 10.1007/s12613-017-1528-9
    [29]
    Yang X M, Duan J P, Shi C B, et al. A thermodynamic model of phosphorus distribution ratio between CaO?SiO2?MgO?FeO?Fe2O3?MnO?Al2O3?P2O5 slags and molten steel during a top-bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory. Metall Mater Trans B, 2011, 42(4): 738 doi: 10.1007/s11663-011-9491-8
    [30]
    Duan S C, Guo X L, Guo H J, et al. A manganese distribution prediction model for CaO?SiO2?FeO?MgO?MnO?Al2O3 slags based on IMCT. Ironmak Steelmak, 2017, 44(3): 168 doi: 10.1080/03019233.2016.1198859
    [31]
    Liu X, Diao J, Ke Z Q, et al. Experimental investigation and thermodynamic modeling of vanadium, chromium and phosphorus distributions between FeO?SiO2?CaO?V2O3?Cr2O3?P2O5?MnO slag and semi-steel. Metall Res Technol, 2016, 113(4): 407 doi: 10.1051/metal/2016023
    [32]
    Yang X M, Shi C B, Zhang M, et al. A thermodynamic model of phosphate capacity for CaO?SiO2?MgO?FeO?Fe2O3?MnO?Al2O3?P2O5 slags equilibrated with molten steel during a top-bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory. Metall Mater Trans B, 2011, 42(5): 951 doi: 10.1007/s11663-011-9527-0
    [33]
    Wang Z J, Sohn I. Understanding the solidification and leaching behavior of synthesized Cr-containing stainless steel slags with varying Al2O3/SiO2 mass ratios. Ceram Int, 2021, 47(8): 10918 doi: 10.1016/j.ceramint.2020.12.211
    [34]
    García-Ramos E, Romero-Serrano A, Zeifert B, et al. Immobilization of chromium in slags using MgO and Al2O3. Steel Res Int, 2008, 79(5): 332 doi: 10.1002/srin.200806135
    [35]
    Cabrera-Real H, Romero-Serrano A, Zeifert B, et al. Effect of MgO and CaO/SiO2 on the immobilization of chromium in synthetic slags. J Mater Cycles Waste Manag, 2012, 14(4): 317 doi: 10.1007/s10163-012-0072-y
    [36]
    Samada Y, Miki T, Hino M. Prevention of chromium elution from stainless steel slag into seawater. ISIJ Int, 2011, 51(5): 728 doi: 10.2355/isijinternational.51.728
    [37]
    Albertsson G J, Teng L, Bj?rkman B. Effect of basicity on chromium partition in CaO?MgO?SiO2?Cr2O3 synthetic slag at 1873 K. Miner Process Extr Metall, 2014, 123(2): 116 doi: 10.1179/1743285513Y.0000000038
    [38]
    Li J L, Zeng Q, Mou Q Q, et al. Effect of basicity on precipitation of spinel crystals in a CaO?SiO2?MgO?Cr2O3?FeO system. High Temp Mater Process, 2019, 38(2019): 867 doi: 10.1515/htmp-2019-0043
    [39]
    Shu Q F, Luo Q Y, Wang L J, et al. Effects of MnO and CaO/SiO2 mass ratio on phase formations of CaO?Al2O3?MgO?SiO2?CrOx Slag at 1673 K and PO2 = 10-10 atm. Steel Res Int, 2014, 86(4): 391
    [40]
    Cao L H, Liu C J, Zhao Q, et al. Analysis on the stability of chromium in mineral phases in stainless steel slag. Metall Res Technol, 2018, 115(1): 114 doi: 10.1051/metal/2017071
    [41]
    Li W L, Xue X X. Effects of silica addition on chromium distribution in stainless-steel slag. Ironmak Steelmak, 2018, 45(10): 929 doi: 10.1080/03019233.2017.1412386
    [42]
    Beukes J P, Guest R N. Technical note Cr(VI) generation during milling. Miner Eng, 2001, 14(4): 423 doi: 10.1016/S0892-6875(01)00022-X
    [43]
    Li J L, Xu A J, He D F, et al. Effect of FeO on the formation of spinel phases and chromium distribution in the CaO?SiO2?MgO?Al2O3?Cr2O3 system. Int J Miner Metall Mater, 2013, 20(3): 253 doi: 10.1007/s12613-013-0720-9
    [44]
    余岳, 王迪, 李建立, 等. FeO影響CaO?SiO2?MgO?Al2O3?Cr2O3體系中含鉻尖晶石晶體析出的熱力學分析. 武漢科技大學學報, 2018, 41(1):15

    Yu Y, Wang D, Li J L, et al. Thermodynamic calculation of FeO effect on precipitation of spinel containing chromium in CaO?SiO2?MgO?Al2O3?Cr2O3 system. J Wuhan Univ Sci Technol, 2018, 41(1): 15
    [45]
    Zeng Q, Li J L, Mou Q Q, et al. Effect of FeO on spinel crystallization and chromium stability in stainless steel-making slag. JOM, 2019, 71(7): 2331 doi: 10.1007/s11837-019-03465-0
    [46]
    Mou Q Q, Li J L, Zeng Q, et al. Effect of Fe2O3 on the size and components of spinel crystals in the CaO?SiO2?MgO?Al2O3?Cr2O3 system. Int J Miner Metall Mater, 2019, 26(9): 1113 doi: 10.1007/s12613-019-1822-9
    [47]
    Zeng Q, Li J L, Yu Y, et al. Occurrence and leaching behavior of chromium in synthetic stainless steel slag containing FetO. Minerals, 2021, 11(10): 1055 doi: 10.3390/min11101055
    [48]
    Arredondo-Torres V, Romero-Serrano A, Zeifert B, et al. Stabilization of MgCr2O4 spinel in slags of the SiO2?CaO?MgO?Cr2O3 system. Rev Metal, 2006, 42(6): 417
    [49]
    Morita K, Inoue A, Takayama N, et al. The solubility of MgO?Cr2O3 in MgO?Al2O3?SiO2?CaO slag at 1600 ℃ under reducing conditions. Tetsu-to-Hagane, 1988, 74(6): 999 doi: 10.2355/tetsutohagane1955.74.6_999
    [50]
    Morita K, Shibuya T, Sano N. The solubility of the chromite in MgO?Al2O3?SiO2?CaO melts at 1600 ℃ in air. Tetsu-to-Hagane, 1988, 74(4): 632 doi: 10.2355/tetsutohagane1955.74.4_632
    [51]
    Albertsson G, Teng L D, Bj?rkman B, et al. Effect of low oxygen partial pressure on the chromium partition in CaO?MgO?SiO2?Cr2O3?Al2O3 synthetic slag at elevated temperatures. Steel Res Int, 2013, 84(7): 670 doi: 10.1002/srin.201200214
    [52]
    Cao L H, Liu C J, Zhao Q, et al. Effect of Al2O3 modification on enrichment and stabilization of chromium in stainless steel slag. J Iron Steel Res Int, 2017, 24(3): 258 doi: 10.1016/S1006-706X(17)30038-9
    [53]
    Freij S J, Parkinson G M. Surface morphology and crystal growth mechanism of gibbsite in industrial Bayer liquors. Hydrometallurgy, 2005, 78(3-4): 246 doi: 10.1016/j.hydromet.2005.04.001
    [54]
    Zhang L J, Chen Z Y, Hu Q M, et al. On the abnormal fast diffusion of solute atoms in α-Ti: A first-principles investigation. J Alloys Compd, 2018, 740: 156 doi: 10.1016/j.jallcom.2017.12.359
    [55]
    Li J L, Mou Q Q, Zeng Q, et al. Experimental study on precipitation behavior of spinels in stainless steel-making slag under heating treatment. Processes, 2019, 7(8): 487 doi: 10.3390/pr7080487
    [56]
    Sakai Y, Yabe Y, Takahashi M, et al. Elution of hexavalent chromium from molten sewage sludge slag: Influence of sample basicity and cooling rate. Ind Eng Chem Res, 2013, 52(10): 3903 doi: 10.1021/ie303354j
    [57]
    Albertsson G J, Engstr?m F, Teng L D. Effect of the heat treatment on the chromium partition in Cr-containing industrial and synthetic slags. Steel Res Int, 2014, 85(10): 1418 doi: 10.1002/srin.201300231
    [58]
    Cao L H, Liu C J, Zhao Q, et al. Growth behavior of spinel in stainless steel slag during cooling process. J Iron Steel Res Int, 2018, 25(11): 1131 doi: 10.1007/s42243-018-0058-7
    [59]
    Li W L, Xue X X. Effect of cooling regime on phase transformation and chromium enrichment in stainless-steel slag. Ironmak Steelmak, 2019, 46(7): 642 doi: 10.1080/03019233.2018.1436890
    [60]
    Chan C, Young J. Physical stabilization of the beta to gamma transformation in dicalcium silicate. J Am Ceram Soc, 2005, 75(6): 1621
    [61]
    Ghose A, Chopra S, Young J F. Microstructural characterization of doped dicalcium silicate polymorphs. J Mater Sci, 1983, 18(10): 2905 doi: 10.1007/BF00700771
    [62]
    Klyuev V P, Pevzner B Z. The influence of aluminum oxide on the thermal expansion, glass transition temperature, and viscosity of lithium and sodium aluminoborate glasses. Glass Phys Chem, 2002, 28(4): 207 doi: 10.1023/A:1019954010719
    [63]
    Klyuev V P, Pevzner B Z. Structural interpretation of the glass transition temperature and thermal expansion of glasses in the system BaO?Al2O3?B2O3. Phys Chem Glasses, 2000, 41(6): 380
    [64]
    Klyuev V P, Pevzner B Z. Thermal expansion and transition temperature of glasses in the systems BeO?Al2O3?B2O3 and MgO?Al2O3?B2O3. J Non Cryst Solids, 2007, 353(18-21): 2008 doi: 10.1016/j.jnoncrysol.2007.01.065
    [65]
    Lin Y, Luo Q Y, Yan B J, et al. Effect of B2O3 addition on mineralogical phases and leaching behavior of synthetic CaO?SiO2?MgO?Al2O3?CrOx slag. J Mater Cycles Waste Manag, 2020, 22(4): 1208 doi: 10.1007/s10163-020-01015-4
    [66]
    王偉, 廖偉, 武杏榮, 等. 不銹鋼渣中鉻的賦存狀態與鉻的富集行為研究. 礦產綜合利用, 2012(3):42 doi: 10.3969/j.issn.1000-6532.2012.03.011

    Wang W, Liao W, Wu X R, et al. Study on occurrence and concentrating behavior of chromium in stainless steel slag. Multipurp Util Miner Resour, 2012(3): 42 doi: 10.3969/j.issn.1000-6532.2012.03.011
    [67]
    Wu X R, Zhong Q B, Shen X M, et al. Influence of B2O3 on crystallization behavior of Cr-bearing phase in stainless steel slag // 2018 4th International Conference on Green Materials and Environmental Engineering (GMEE). Beijing, 2018: 1
    [68]
    Li W L, Xue X X. Effects of boron oxide addition on chromium distribution and emission of hexavalent chromium in stainless-steel slag. Ind Eng Chem Res, 2018, 57(13): 4731 doi: 10.1021/acs.iecr.8b00499
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article views (416) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频