<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
CHEN Zhen-zhen, CHEN Hong-qiang, HUANG Lei, ZHANG Yong-hai, HAO Nan-jing. Research progress on silica nanofluids for convective heat transfer enhancement[J]. Chinese Journal of Engineering, 2022, 44(4): 812-825. doi: 10.13374/j.issn2095-9389.2022.02.10.002
Citation: CHEN Zhen-zhen, CHEN Hong-qiang, HUANG Lei, ZHANG Yong-hai, HAO Nan-jing. Research progress on silica nanofluids for convective heat transfer enhancement[J]. Chinese Journal of Engineering, 2022, 44(4): 812-825. doi: 10.13374/j.issn2095-9389.2022.02.10.002

Research progress on silica nanofluids for convective heat transfer enhancement

doi: 10.13374/j.issn2095-9389.2022.02.10.002
More Information
  • Corresponding author: E-mail: nanjing.hao@xjtu.edu.cn
  • Received Date: 2022-02-10
    Available Online: 2022-03-03
  • Publish Date: 2022-04-02
  • With the rapid development of semiconductor and electronics technologies, high-integration and high-performance microelectronic devices play more important roles in industrial fields, such as the aeronautics and astronautics, energy, medical, and automobile fields. To avoid thermal failure in high heat flux conditions, effective thermal management of microelectronic devices is critical. Conventional air and liquid cooling approaches suffer from not only high power consumption but also low heat dissipation efficiency, considerably limiting the stability and reliability of microelectronic devices. In recent years, researchers proposed many passive (such as nanofluids, surface roughness, and heating element structures) and active (such as the acoustic, electric, and magnetic fields) heat transfer enhancement approaches. Because of its low cost, flexible control, and diverse forms, the nanofluid approach has attracted considerable attention. To solve the low thermal conductivity issue of conventional working fluids (such as water, ethylene glycol, and mineral oil), researchers have developed a series of particulate forms, including but not limited to silica dioxide (SiO2), aluminum oxide (Al2O3), titanium dioxide (TiO2), carbon nanotube, copper (Cu), silver (Ag), silicon carbide (SiC), diamond, iron oxide (Fe2O3), zinc oxide (ZnO), magnesium oxide (MgO), and cupric oxide (CuO). Particularly, silica (SiO2) nanofluids, with their good mechanical and chemical stability, abundant structures, and diverse preparation methods, make them interesting to researchers. To date, SiO2 nanofluids exhibit outstanding intensification performance in the fields of conduction, convection, and radiation heat transfer. This study provided a systematic overview of the research progress on SiO2 nanofluids for convective heat transfer applications. First, the physicochemical properties and preparation methods (i.e., one-step and two-step methods) of SiO2 nanofluids were introduced. Further, the state of the art of SiO2 nanofluids for single-phase convection and phase change convection applications was summarized, and the numerical simulation and experimental observation results of natural convection, forced convection, pool boiling, and flow boiling were tabulated and discussed in detail. Finally, the current remaining challenges and future research directions were highlighted in terms of the in-depth heat transfer enhancement principles, practical industrialization applications, systematic and accurate evaluation of heat transfer performance, preparation and characterization strategies, exploration of a high-diversity library of particulate structures, and optimization of heat exchanger apparatus. We believe that this review article can shed new insights into the rational design and preparation of advanced SiO2 nanofluids and provide important guidelines to develop robust nanofluid-based liquid cooling heat sinks.

     

  • loading
  • [1]
    魏進家, 劉斌, 張永海. 常/微重力下微結構表面強化沸騰換熱研究進展. 化工進展, 2019, 38(1):14

    Wei J J, Liu B, Zhang Y H. Progress in enhanced boiling heat transfer over microstructured surfaces under normal/microgravity. Chem Ind Eng Prog, 2019, 38(1): 14
    [2]
    魏進家, 張永海. 柱狀微結構表面強化沸騰換熱研究綜述. 化工學報, 2016, 67(1):97

    Wei J J, Zhang Y H. Review of enhanced boiling heat transfer over micro-pin-finned surfaces. CIESC J, 2016, 67(1): 97
    [3]
    Singh S K, Sharma D. Review of pool and flow boiling heat transfer enhancement through surface modification. Int J Heat Mass Transf, 2021, 181: 122020 doi: 10.1016/j.ijheatmasstransfer.2021.122020
    [4]
    Sidik N A C, Muhamad M N A W, Japar W M A A, et al. An overview of passive techniques for heat transfer augmentation in microchannel heat sink. Int Commun Heat Mass Transf, 2017, 88: 74 doi: 10.1016/j.icheatmasstransfer.2017.08.009
    [5]
    Ahn H S, Kim M H. A review on critical heat flux enhancement with nanofluids and surface modification. J Heat Transf, 2012, 134: (2): 024001
    [6]
    Bahiraei M, Heshmatian S. Electronics cooling with nanofluids: A critical review. Energy Convers Manag, 2018, 172: 438 doi: 10.1016/j.enconman.2018.07.047
    [7]
    Deng D X, Zeng L, Sun W. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks. Int J Heat Mass Transf, 2021, 175: 121332 doi: 10.1016/j.ijheatmasstransfer.2021.121332
    [8]
    Chen Z Z, Pei Z C, Zhao X, et al. Acoustic microreactors for chemical engineering. Chem Eng J, 2022, 433: 133258 doi: 10.1016/j.cej.2021.133258
    [9]
    Dey D, Sahu D S. Nanofluid in the multiphase flow field and heat transfer: A review. Heat Transf, 2021, 50(4): 3722 doi: 10.1002/htj.22050
    [10]
    Guo Z X. A review on heat transfer enhancement with nanofluids. J Enh Heat Transf, 2020, 27(1): 1 doi: 10.1615/JEnhHeatTransf.2019031575
    [11]
    Sajid M U, Ali H M. Recent advances in application of nanofluids in heat transfer devices: A critical review. Renew Sustain Energy Rev, 2019, 103: 556 doi: 10.1016/j.rser.2018.12.057
    [12]
    Terekhov V I, Kalinina S V, Lemanov V V. The mechanism of heat transfer in nanofluids: State of the art (review). Part 1. Synthesis and properties of nanofluids. Thermophys Aeromech, 2010, 17(1): 1
    [13]
    Terekhov V I, Kalinina S V, Lemanov V V. The mechanism of heat transfer in nanofluids: State of the art (review). Part 2. Convective heat transfer. Thermophys Aeromech, 2010, 17(2): 157
    [14]
    Ganvir R B, Walke P V, Kriplani V M. Heat transfer characteristics in nanofluid—A review. Renew Sustain Energy Rev, 2017, 75: 451 doi: 10.1016/j.rser.2016.11.010
    [15]
    Wen D S, Lin G P, Vafaei S, et al. Review of nanofluids for heat transfer applications. Particuology, 2009, 7(2): 141 doi: 10.1016/j.partic.2009.01.007
    [16]
    Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles [J/OL]. U. S. Department of Energy Office of Scientific and Technical Information Online (1995-10-01) [2022-02-10].https://www.osti.gov/servlets/purl/196525
    [17]
    林璟, 方利國. 納米流體強化傳熱技術及其應用新進展. 化工進展, 2008, 27(4):488 doi: 10.3321/j.issn:1000-6613.2008.04.004

    Lin J, Fang L G. Recent progress of technology and application of heat transfer enhancement of nanofuilds. Chem Ind Eng Prog, 2008, 27(4): 488 doi: 10.3321/j.issn:1000-6613.2008.04.004
    [18]
    Zahmatkesh I, Sheremet M, Yang L, et al. Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review. J Mol Liq, 2021, 321: 114430 doi: 10.1016/j.molliq.2020.114430
    [19]
    Menni Y, Chamkha A J, Ameur H. Advances of nanofluids in heat exchangers—A review. Heat Transf, 2020, 49(8): 4321 doi: 10.1002/htj.21829
    [20]
    Chandrasekar M, Suresh S. A review on the mechanisms of heat transport in nanofluids. Heat Transf Eng, 2009, 30(14): 1136 doi: 10.1080/01457630902972744
    [21]
    Godson L, Raja B, Mohan Lal D, et al. Enhancement of heat transfer using nanofluids—An overview. Renew Sustain Energy Rev, 2010, 14(2): 629 doi: 10.1016/j.rser.2009.10.004
    [22]
    Sarkar J. A critical review on convective heat transfer correlations of nanofluids. Renew Sustain Energy Rev, 2011, 15(6): 3271 doi: 10.1016/j.rser.2011.04.025
    [23]
    Mohammed H A, Bhaskaran G, Shuaib N H, et al. Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review. Renew Sustain Energy Rev, 2011, 15(3): 1502 doi: 10.1016/j.rser.2010.11.031
    [24]
    Pinto R V, Fiorelli F A S. Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl Therm Eng, 2016, 108: 720 doi: 10.1016/j.applthermaleng.2016.07.147
    [25]
    Vanaki S M, Ganesan P, Mohammed H A. Numerical study of convective heat transfer of nanofluids: A review. Renew Sustain Energy Rev, 2016, 54: 1212 doi: 10.1016/j.rser.2015.10.042
    [26]
    Sidik N A C, Mamat R. Recent progress on lattice Boltzmann simulation of nanofluids: A review. Int Commun Heat Mass Transf, 2015, 66: 11 doi: 10.1016/j.icheatmasstransfer.2015.05.010
    [27]
    Fang X D, Wang R, Chen W W, et al. A review of flow boiling heat transfer of nanofluids. Appl Therm Eng, 2015, 91: 1003 doi: 10.1016/j.applthermaleng.2015.08.100
    [28]
    Ciloglu D, Bolukbasi A. A comprehensive review on pool boiling of nanofluids. Appl Therm Eng, 2015, 84: 45 doi: 10.1016/j.applthermaleng.2015.03.063
    [29]
    Murshed S M S, Nieto de Castro C A, Louren?o M J V, et al. A review of boiling and convective heat transfer with nanofluids. Renew Sustain Energy Rev, 2011, 15(5): 2342 doi: 10.1016/j.rser.2011.02.016
    [30]
    Liang G T, Mudawar I. Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels. Int J Heat Mass Transf, 2019, 136: 324 doi: 10.1016/j.ijheatmasstransfer.2019.02.086
    [31]
    Kamel M, Lezsovits F. Boiling heat transfer of nanofluids: A review of recent studies. Therm Sci, 2019, 23(1): 109 doi: 10.2298/TSCI170419216K
    [32]
    Khan A, Ali H. A comprehensive review on pool boiling heat transfer using nanofluids. Therm Sci, 2019, 23(5B): 3209
    [33]
    何雅玲, 謝濤. 氣凝膠納米多孔材料傳熱計算模型研究進展. 科學通報, 2015, 60(2):137 doi: 10.1360/N972014-00948

    He Y L, Xie T. A review of heat transfer models of nanoporous silica aerogel insulation material. Chin Sci Bull, 2015, 60(2): 137 doi: 10.1360/N972014-00948
    [34]
    彭超豪, 楊穆, 欒奕, 等. 介孔SBA-15/SiO2氣凝膠硅—硅復合材料的制備和性能. 工程科學學報, 2016, 38(2):270

    Peng C H, Yang M, Luan Y, et al. Preparation and properties of a mesoporous SBA-15/silica composited aerogel. Chin J Eng, 2016, 38(2): 270
    [35]
    Hao N, Li L, Tang F. Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. Int Mater Rev, 2017, 62(2): 57 doi: 10.1080/09506608.2016.1190118
    [36]
    Hao N J, Nie Y, Zhang J X J. Microfluidic synthesis of functional inorganic micro-/nanoparticles and applications in biomedical engineering. Int Mater Rev, 2018, 63(8): 461 doi: 10.1080/09506608.2018.1434452
    [37]
    Hao N J, Nie Y, Zhang J X J. Microfluidics for silica biomaterials synthesis: Opportunities and challenges. Biomater Sci, 2019, 7(6): 2218 doi: 10.1039/C9BM00238C
    [38]
    Chen Z Z, Liu P Z, Zhao X, et al. Sharp-edge acoustic microfluidics: Principles, structures, and applications. Appl Mater Today, 2021, 25: 101239 doi: 10.1016/j.apmt.2021.101239
    [39]
    Chen Z Z, Shen L, Zhao X, et al. Acoustofluidic micromixers: From rational design to lab-on-a-chip applications. Appl Mater Today, 2022, 26: 101356 doi: 10.1016/j.apmt.2021.101356
    [40]
    Ali H, Babar H, Shah T, et al. Preparation techniques of TiO2 nanofluids and challenges: A review. Appl Sci, 2018, 8(4): 587 doi: 10.3390/app8040587
    [41]
    Zainon S N M, Azmi W H. Recent progress on stability and thermo-physical properties of mono and hybrid towards green nanofluids. Micromachines, 2021, 12(2): 176 doi: 10.3390/mi12020176
    [42]
    李靜, 馮妍卉, 張欣欣, 等. 介孔二氧化硅球形孔內近場輻射換熱. 工程科學學報, 2015, 37(8):1063

    Li J, Feng Y H, Zhang X X, et al. Near-field radiation across a spherical pore in mesoporous silica. Chin J Eng, 2015, 37(8): 1063
    [43]
    Sidik N A C, Mohammed H A, Alawi O A, et al. A review on preparation methods and challenges of nanofluids. Int Commun Heat Mass Transf, 2014, 54: 115 doi: 10.1016/j.icheatmasstransfer.2014.03.002
    [44]
    Wu J M, Zhao J Y. A review of nanofluid heat transfer and critical heat flux enhancement—Research gap to engineering application. Prog Nucl Energy, 2013, 66: 13 doi: 10.1016/j.pnucene.2013.03.009
    [45]
    Saidur R, Leong K Y, Mohammed H A. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev, 2011, 15(3): 1646 doi: 10.1016/j.rser.2010.11.035
    [46]
    Haddad Z, Abid C, Mohamad A A, et al. Natural convection of silica–water nanofluids based on experimental measured thermophysical properties: Critical analysis. Heat Mass Transf, 2016, 52(8): 1649 doi: 10.1007/s00231-015-1682-4
    [47]
    Mahian O, Kianifar A, Heris S Z, et al. Natural convection of silica nanofluids in square and triangular enclosures: Theoretical and experimental study. Int J Heat Mass Transf, 2016, 99: 792 doi: 10.1016/j.ijheatmasstransfer.2016.03.045
    [48]
    Akilu S, Baheta A T, Minea A A, et al. Rheology and thermal conductivity of non-porous silica (SiO2) in viscous glycerol and ethylene glycol based nanofluids. Int Commun Heat Mass Transf, 2017, 88: 245 doi: 10.1016/j.icheatmasstransfer.2017.08.001
    [49]
    Esfahani M A, Toghraie D. Experimental investigation for developing a new model for the thermal conductivity of Silica/Water-Ethylene glycol (40%-60%) nanofluid at different temperatures and solid volume fractions. J Mol Liq, 2017, 232: 105 doi: 10.1016/j.molliq.2017.02.037
    [50]
    Li Z, Kalbasi R, Nguyen Q, et al. Effects of sonication duration and nanoparticles concentration on thermal conductivity of silica-ethylene glycol nanofluid under different temperatures: An experimental study. Powder Technol, 2020, 367: 464 doi: 10.1016/j.powtec.2020.03.058
    [51]
    Ghalambaz M, Mehryan S A M, Tahmasebi A, et al. Non-Newtonian phase-change heat transfer of nano-enhanced octadecane with mesoporous silica particles in a tilted enclosure using a deformed mesh technique. Appl Math Model, 2020, 85: 318 doi: 10.1016/j.apm.2020.03.046
    [52]
    Mehryan S A M, Vaezi M, Sheremet M, et al. Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2). Int J Heat Mass Transf, 2020, 151: 119385 doi: 10.1016/j.ijheatmasstransfer.2020.119385
    [53]
    Maleki A, Haghighi A, Irandoost Shahrestani M, et al. Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles. J Therm Anal Calorim, 2021, 144(4): 1613 doi: 10.1007/s10973-020-09541-x
    [54]
    Preeti, Ojjela O. Numerical investigation of heat transport in Alumina-Silica hybrid nanofluid flow with modeling and simulation. Math Comput Simul, 2022, 193: 100 doi: 10.1016/j.matcom.2021.09.022
    [55]
    Fazeli S A, Hashemi S M H, Zirakzadeh H, et al. Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid. Superlattices Microstruct, 2012, 51(2): 247 doi: 10.1016/j.spmi.2011.11.017
    [56]
    Ahmad A, Mansour K, Masoud D. An experimental comparison of water based alumina and silica nanofluids heat transfer in laminar flow regime. J Central South Univ, 2013, 20(12): 3582 doi: 10.1007/s11771-013-1884-1
    [57]
    Ajeel R K, Salim W S I, Hasnan K. An experimental investigation of thermal-hydraulic performance of silica nanofluid in corrugated channels. Adv Powder Technol, 2019, 30(10): 2262 doi: 10.1016/j.apt.2019.07.006
    [58]
    Ajeel R K, Salim W S I, Sopian K, et al. Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: An experimental and numerical study. Int J Heat Mass Transf, 2019, 145: 118806 doi: 10.1016/j.ijheatmasstransfer.2019.118806
    [59]
    Mohan M N, Thomas S, Sobhan C B. Convective heat transfer studies in dilute alumina and silica nanofluids flowing through a channel using Mach-Zehnder interferometry. Heat Mass Transf, 2020, 56(6): 1793 doi: 10.1007/s00231-019-02792-x
    [60]
    Nagarajan F C, Kannaiyan S, Boobalan C. Intensification of heat transfer rate using alumina-silica nanocoolant. Int J Heat Mass Transf, 2020, 149: 119127 doi: 10.1016/j.ijheatmasstransfer.2019.119127
    [61]
    Shah T R, Ali H M, Janjua M M. On aqua-based silica (SiO2–water) nanocoolant: Convective thermal potential and experimental precision evaluation in aluminum tube radiator. Nanomaterials, 2020, 10(9): 1736 doi: 10.3390/nano10091736
    [62]
    Pourrajab R, Noghrehabadi A, Behbahani M. Thermo-hydraulic performance of mesoporous silica with Cu nanoparticles in helically grooved tube. Appl Therm Eng, 2021, 185: 116436 doi: 10.1016/j.applthermaleng.2020.116436
    [63]
    Nagarajan F C, Kannaiyan S K, Boobalan C. A proficient approach to enhance heat transfer using cupric oxide/silica hybrid nanoliquids. J Therm Anal Calorim, 2021: 1
    [64]
    Vassallo P, Kumar R, D’Amico S. Pool boiling heat transfer experiments in silica-water nano-fluids. Int J Heat Mass Transf, 2004, 47(2): 407 doi: 10.1016/S0017-9310(03)00361-2
    [65]
    Milanova D, Kumar R. Role of ions in pool boiling heat transfer of pure and silica nanofluids. Appl Phys Lett, 2005, 87(23): 233107 doi: 10.1063/1.2138805
    [66]
    Kim S J, Bang I C, Buongiorno J, et al. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl Phys Lett, 2006, 89(15): 153107 doi: 10.1063/1.2360892
    [67]
    Kim S J, Bang I C, Buongiorno J, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf, 2007, 50(19-20): 4105 doi: 10.1016/j.ijheatmasstransfer.2007.02.002
    [68]
    Milanova D, Kumar R. Heat transfer behavior of silica nanoparticles in pool boiling experiment. J Heat Transf, 2008, 130(4): 042401 doi: 10.1115/1.2787020
    [69]
    Rostamian F, Etesami N. Pool boiling characteristics of silica/water nanofluid and variation of heater surface roughness in domain of time. Int Commun Heat Mass Transf, 2018, 95: 98 doi: 10.1016/j.icheatmasstransfer.2018.04.003
    [70]
    Tian Z, Etedali S, Afrand M, et al. Experimental study of the effect of various surfactants on surface sediment and pool boiling heat transfer coefficient of silica/DI water nano-fluid. Powder Technol, 2019, 356: 391 doi: 10.1016/j.powtec.2019.08.049
    [71]
    Norouzipour A, Abdollahi A, Afrand M. Experimental study of the optimum size of silica nanoparticles on the pool boiling heat transfer coefficient of silicon oxide/deionized water nanofluid. Powder Technol, 2019, 345: 728 doi: 10.1016/j.powtec.2019.01.034
    [72]
    Lee M S, Kam D H, Jeong Y H. An experimental observation of the effects of submicron- and micron-sized mesoporous silica particles on the critical heat flux. Int J Heat Mass Transf, 2020, 160: 120182 doi: 10.1016/j.ijheatmasstransfer.2020.120182
    [73]
    Zafar S, Adil M, Azhar M, et al. Experimental and numerical study of Pool boiling and critical heat flux enhancement using water based silica Nanofluids. Heat Mass Transf, 2021, 57(10): 1593 doi: 10.1007/s00231-021-03047-4
    [74]
    Mukherjee S, Ali N, Aljuwayhel N F, et al. Pool boiling amelioration by aqueous dispersion of silica nanoparticles. Nanomaterials, 2021, 11(8): 2138 doi: 10.3390/nano11082138
    [75]
    Henderson K, Park Y G, Liu L, et al. Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube. Int J Heat Mass Transf, 2010, 53(5-6): 944 doi: 10.1016/j.ijheatmasstransfer.2009.11.026
    [76]
    陸鑫, 楊峻. SiO2-DW納米流體重力熱管傳熱性能試驗研究. 現代化工, 2015, 35(11):145

    Lu X, Yang J. Heat transfer characteristics of SiO2-DW nanofluid gravity heat pipe. Mod Chem Ind, 2015, 35(11): 145
    [77]
    楊文斌, 楊峻. SiO2-乙醇納米流體重力熱管傳熱性能的試驗研究. 當代化工, 2019, 48(12):2962

    Yang W B, Yang J. Experimental research on heat transfer performance of SiO2-ethanol nanofluid gravity heat pipe. Contemp Chem Ind, 2019, 48(12): 2962
    [78]
    Kujawska A, Mulka R, Hamze S, et al. The effect of boiling in a thermosyphon on surface tension and contact angle of silica and graphene oxide nanofluids. Colloids Surf A Physicochem Eng Aspects, 2021, 627: 127082 doi: 10.1016/j.colsurfa.2021.127082
    [79]
    Zhang D W, He Z T, Guan J, et al. Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study. Int J Heat Mass Transf, 2022, 183: 122100 doi: 10.1016/j.ijheatmasstransfer.2021.122100
    [80]
    李亞瓊, 梁凱彥, 王靜靜, 等. 介孔二氧化硅基復合相變材料研究進展. 工程科學學報, 2020, 42(10):1229

    Li Y Q, Liang K Y, Wang J J, et al. Research progress of mesoporous silica-based composite phase change materials. Chin J Eng, 2020, 42(10): 1229
    [81]
    鐘麗敏, 楊穆, 欒奕, 等. 石蠟/二氧化硅復合相變材料的制備及其性能. 工程科學學報, 2015, 37(7):936

    Zhong L M, Yang M, Luan Y, et al. Preparation and properties of paraffin/SiO2 composite phase change materials. Chin J Eng, 2015, 37(7): 936
    [82]
    Salehi H, Hormozi F. Numerical study of silica-water based nanofluid nucleate pool boiling by two-phase Eulerian scheme. Heat Mass Transf, 2018, 54(3): 773 doi: 10.1007/s00231-017-2146-9
    [83]
    Forrest E, Williamson E, Buongiorno J, et al. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int J Heat Mass Transf, 2010, 53(1-3): 58 doi: 10.1016/j.ijheatmasstransfer.2009.10.008
    [84]
    Zupan?i? M, Steinbücher M, Gregor?i? P, et al. Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces. Appl Therm Eng, 2015, 91: 288 doi: 10.1016/j.applthermaleng.2015.08.026
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views (6347) PDF downloads(115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频