Citation: | CHEN Zhen-zhen, CHEN Hong-qiang, HUANG Lei, ZHANG Yong-hai, HAO Nan-jing. Research progress on silica nanofluids for convective heat transfer enhancement[J]. Chinese Journal of Engineering, 2022, 44(4): 812-825. doi: 10.13374/j.issn2095-9389.2022.02.10.002 |
[1] |
魏進家, 劉斌, 張永海. 常/微重力下微結構表面強化沸騰換熱研究進展. 化工進展, 2019, 38(1):14
Wei J J, Liu B, Zhang Y H. Progress in enhanced boiling heat transfer over microstructured surfaces under normal/microgravity. Chem Ind Eng Prog, 2019, 38(1): 14
|
[2] |
魏進家, 張永海. 柱狀微結構表面強化沸騰換熱研究綜述. 化工學報, 2016, 67(1):97
Wei J J, Zhang Y H. Review of enhanced boiling heat transfer over micro-pin-finned surfaces. CIESC J, 2016, 67(1): 97
|
[3] |
Singh S K, Sharma D. Review of pool and flow boiling heat transfer enhancement through surface modification. Int J Heat Mass Transf, 2021, 181: 122020 doi: 10.1016/j.ijheatmasstransfer.2021.122020
|
[4] |
Sidik N A C, Muhamad M N A W, Japar W M A A, et al. An overview of passive techniques for heat transfer augmentation in microchannel heat sink. Int Commun Heat Mass Transf, 2017, 88: 74 doi: 10.1016/j.icheatmasstransfer.2017.08.009
|
[5] |
Ahn H S, Kim M H. A review on critical heat flux enhancement with nanofluids and surface modification. J Heat Transf, 2012, 134: (2): 024001
|
[6] |
Bahiraei M, Heshmatian S. Electronics cooling with nanofluids: A critical review. Energy Convers Manag, 2018, 172: 438 doi: 10.1016/j.enconman.2018.07.047
|
[7] |
Deng D X, Zeng L, Sun W. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks. Int J Heat Mass Transf, 2021, 175: 121332 doi: 10.1016/j.ijheatmasstransfer.2021.121332
|
[8] |
Chen Z Z, Pei Z C, Zhao X, et al. Acoustic microreactors for chemical engineering. Chem Eng J, 2022, 433: 133258 doi: 10.1016/j.cej.2021.133258
|
[9] |
Dey D, Sahu D S. Nanofluid in the multiphase flow field and heat transfer: A review. Heat Transf, 2021, 50(4): 3722 doi: 10.1002/htj.22050
|
[10] |
Guo Z X. A review on heat transfer enhancement with nanofluids. J Enh Heat Transf, 2020, 27(1): 1 doi: 10.1615/JEnhHeatTransf.2019031575
|
[11] |
Sajid M U, Ali H M. Recent advances in application of nanofluids in heat transfer devices: A critical review. Renew Sustain Energy Rev, 2019, 103: 556 doi: 10.1016/j.rser.2018.12.057
|
[12] |
Terekhov V I, Kalinina S V, Lemanov V V. The mechanism of heat transfer in nanofluids: State of the art (review). Part 1. Synthesis and properties of nanofluids. Thermophys Aeromech, 2010, 17(1): 1
|
[13] |
Terekhov V I, Kalinina S V, Lemanov V V. The mechanism of heat transfer in nanofluids: State of the art (review). Part 2. Convective heat transfer. Thermophys Aeromech, 2010, 17(2): 157
|
[14] |
Ganvir R B, Walke P V, Kriplani V M. Heat transfer characteristics in nanofluid—A review. Renew Sustain Energy Rev, 2017, 75: 451 doi: 10.1016/j.rser.2016.11.010
|
[15] |
Wen D S, Lin G P, Vafaei S, et al. Review of nanofluids for heat transfer applications. Particuology, 2009, 7(2): 141 doi: 10.1016/j.partic.2009.01.007
|
[16] |
Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles [J/OL]. U. S. Department of Energy Office of Scientific and Technical Information Online (1995-10-01) [2022-02-10].https://www.osti.gov/servlets/purl/196525
|
[17] |
林璟, 方利國. 納米流體強化傳熱技術及其應用新進展. 化工進展, 2008, 27(4):488 doi: 10.3321/j.issn:1000-6613.2008.04.004
Lin J, Fang L G. Recent progress of technology and application of heat transfer enhancement of nanofuilds. Chem Ind Eng Prog, 2008, 27(4): 488 doi: 10.3321/j.issn:1000-6613.2008.04.004
|
[18] |
Zahmatkesh I, Sheremet M, Yang L, et al. Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review. J Mol Liq, 2021, 321: 114430 doi: 10.1016/j.molliq.2020.114430
|
[19] |
Menni Y, Chamkha A J, Ameur H. Advances of nanofluids in heat exchangers—A review. Heat Transf, 2020, 49(8): 4321 doi: 10.1002/htj.21829
|
[20] |
Chandrasekar M, Suresh S. A review on the mechanisms of heat transport in nanofluids. Heat Transf Eng, 2009, 30(14): 1136 doi: 10.1080/01457630902972744
|
[21] |
Godson L, Raja B, Mohan Lal D, et al. Enhancement of heat transfer using nanofluids—An overview. Renew Sustain Energy Rev, 2010, 14(2): 629 doi: 10.1016/j.rser.2009.10.004
|
[22] |
Sarkar J. A critical review on convective heat transfer correlations of nanofluids. Renew Sustain Energy Rev, 2011, 15(6): 3271 doi: 10.1016/j.rser.2011.04.025
|
[23] |
Mohammed H A, Bhaskaran G, Shuaib N H, et al. Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review. Renew Sustain Energy Rev, 2011, 15(3): 1502 doi: 10.1016/j.rser.2010.11.031
|
[24] |
Pinto R V, Fiorelli F A S. Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl Therm Eng, 2016, 108: 720 doi: 10.1016/j.applthermaleng.2016.07.147
|
[25] |
Vanaki S M, Ganesan P, Mohammed H A. Numerical study of convective heat transfer of nanofluids: A review. Renew Sustain Energy Rev, 2016, 54: 1212 doi: 10.1016/j.rser.2015.10.042
|
[26] |
Sidik N A C, Mamat R. Recent progress on lattice Boltzmann simulation of nanofluids: A review. Int Commun Heat Mass Transf, 2015, 66: 11 doi: 10.1016/j.icheatmasstransfer.2015.05.010
|
[27] |
Fang X D, Wang R, Chen W W, et al. A review of flow boiling heat transfer of nanofluids. Appl Therm Eng, 2015, 91: 1003 doi: 10.1016/j.applthermaleng.2015.08.100
|
[28] |
Ciloglu D, Bolukbasi A. A comprehensive review on pool boiling of nanofluids. Appl Therm Eng, 2015, 84: 45 doi: 10.1016/j.applthermaleng.2015.03.063
|
[29] |
Murshed S M S, Nieto de Castro C A, Louren?o M J V, et al. A review of boiling and convective heat transfer with nanofluids. Renew Sustain Energy Rev, 2011, 15(5): 2342 doi: 10.1016/j.rser.2011.02.016
|
[30] |
Liang G T, Mudawar I. Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels. Int J Heat Mass Transf, 2019, 136: 324 doi: 10.1016/j.ijheatmasstransfer.2019.02.086
|
[31] |
Kamel M, Lezsovits F. Boiling heat transfer of nanofluids: A review of recent studies. Therm Sci, 2019, 23(1): 109 doi: 10.2298/TSCI170419216K
|
[32] |
Khan A, Ali H. A comprehensive review on pool boiling heat transfer using nanofluids. Therm Sci, 2019, 23(5B): 3209
|
[33] |
何雅玲, 謝濤. 氣凝膠納米多孔材料傳熱計算模型研究進展. 科學通報, 2015, 60(2):137 doi: 10.1360/N972014-00948
He Y L, Xie T. A review of heat transfer models of nanoporous silica aerogel insulation material. Chin Sci Bull, 2015, 60(2): 137 doi: 10.1360/N972014-00948
|
[34] |
彭超豪, 楊穆, 欒奕, 等. 介孔SBA-15/SiO2氣凝膠硅—硅復合材料的制備和性能. 工程科學學報, 2016, 38(2):270
Peng C H, Yang M, Luan Y, et al. Preparation and properties of a mesoporous SBA-15/silica composited aerogel. Chin J Eng, 2016, 38(2): 270
|
[35] |
Hao N, Li L, Tang F. Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. Int Mater Rev, 2017, 62(2): 57 doi: 10.1080/09506608.2016.1190118
|
[36] |
Hao N J, Nie Y, Zhang J X J. Microfluidic synthesis of functional inorganic micro-/nanoparticles and applications in biomedical engineering. Int Mater Rev, 2018, 63(8): 461 doi: 10.1080/09506608.2018.1434452
|
[37] |
Hao N J, Nie Y, Zhang J X J. Microfluidics for silica biomaterials synthesis: Opportunities and challenges. Biomater Sci, 2019, 7(6): 2218 doi: 10.1039/C9BM00238C
|
[38] |
Chen Z Z, Liu P Z, Zhao X, et al. Sharp-edge acoustic microfluidics: Principles, structures, and applications. Appl Mater Today, 2021, 25: 101239 doi: 10.1016/j.apmt.2021.101239
|
[39] |
Chen Z Z, Shen L, Zhao X, et al. Acoustofluidic micromixers: From rational design to lab-on-a-chip applications. Appl Mater Today, 2022, 26: 101356 doi: 10.1016/j.apmt.2021.101356
|
[40] |
Ali H, Babar H, Shah T, et al. Preparation techniques of TiO2 nanofluids and challenges: A review. Appl Sci, 2018, 8(4): 587 doi: 10.3390/app8040587
|
[41] |
Zainon S N M, Azmi W H. Recent progress on stability and thermo-physical properties of mono and hybrid towards green nanofluids. Micromachines, 2021, 12(2): 176 doi: 10.3390/mi12020176
|
[42] |
李靜, 馮妍卉, 張欣欣, 等. 介孔二氧化硅球形孔內近場輻射換熱. 工程科學學報, 2015, 37(8):1063
Li J, Feng Y H, Zhang X X, et al. Near-field radiation across a spherical pore in mesoporous silica. Chin J Eng, 2015, 37(8): 1063
|
[43] |
Sidik N A C, Mohammed H A, Alawi O A, et al. A review on preparation methods and challenges of nanofluids. Int Commun Heat Mass Transf, 2014, 54: 115 doi: 10.1016/j.icheatmasstransfer.2014.03.002
|
[44] |
Wu J M, Zhao J Y. A review of nanofluid heat transfer and critical heat flux enhancement—Research gap to engineering application. Prog Nucl Energy, 2013, 66: 13 doi: 10.1016/j.pnucene.2013.03.009
|
[45] |
Saidur R, Leong K Y, Mohammed H A. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev, 2011, 15(3): 1646 doi: 10.1016/j.rser.2010.11.035
|
[46] |
Haddad Z, Abid C, Mohamad A A, et al. Natural convection of silica–water nanofluids based on experimental measured thermophysical properties: Critical analysis. Heat Mass Transf, 2016, 52(8): 1649 doi: 10.1007/s00231-015-1682-4
|
[47] |
Mahian O, Kianifar A, Heris S Z, et al. Natural convection of silica nanofluids in square and triangular enclosures: Theoretical and experimental study. Int J Heat Mass Transf, 2016, 99: 792 doi: 10.1016/j.ijheatmasstransfer.2016.03.045
|
[48] |
Akilu S, Baheta A T, Minea A A, et al. Rheology and thermal conductivity of non-porous silica (SiO2) in viscous glycerol and ethylene glycol based nanofluids. Int Commun Heat Mass Transf, 2017, 88: 245 doi: 10.1016/j.icheatmasstransfer.2017.08.001
|
[49] |
Esfahani M A, Toghraie D. Experimental investigation for developing a new model for the thermal conductivity of Silica/Water-Ethylene glycol (40%-60%) nanofluid at different temperatures and solid volume fractions. J Mol Liq, 2017, 232: 105 doi: 10.1016/j.molliq.2017.02.037
|
[50] |
Li Z, Kalbasi R, Nguyen Q, et al. Effects of sonication duration and nanoparticles concentration on thermal conductivity of silica-ethylene glycol nanofluid under different temperatures: An experimental study. Powder Technol, 2020, 367: 464 doi: 10.1016/j.powtec.2020.03.058
|
[51] |
Ghalambaz M, Mehryan S A M, Tahmasebi A, et al. Non-Newtonian phase-change heat transfer of nano-enhanced octadecane with mesoporous silica particles in a tilted enclosure using a deformed mesh technique. Appl Math Model, 2020, 85: 318 doi: 10.1016/j.apm.2020.03.046
|
[52] |
Mehryan S A M, Vaezi M, Sheremet M, et al. Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2). Int J Heat Mass Transf, 2020, 151: 119385 doi: 10.1016/j.ijheatmasstransfer.2020.119385
|
[53] |
Maleki A, Haghighi A, Irandoost Shahrestani M, et al. Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles. J Therm Anal Calorim, 2021, 144(4): 1613 doi: 10.1007/s10973-020-09541-x
|
[54] |
Preeti, Ojjela O. Numerical investigation of heat transport in Alumina-Silica hybrid nanofluid flow with modeling and simulation. Math Comput Simul, 2022, 193: 100 doi: 10.1016/j.matcom.2021.09.022
|
[55] |
Fazeli S A, Hashemi S M H, Zirakzadeh H, et al. Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid. Superlattices Microstruct, 2012, 51(2): 247 doi: 10.1016/j.spmi.2011.11.017
|
[56] |
Ahmad A, Mansour K, Masoud D. An experimental comparison of water based alumina and silica nanofluids heat transfer in laminar flow regime. J Central South Univ, 2013, 20(12): 3582 doi: 10.1007/s11771-013-1884-1
|
[57] |
Ajeel R K, Salim W S I, Hasnan K. An experimental investigation of thermal-hydraulic performance of silica nanofluid in corrugated channels. Adv Powder Technol, 2019, 30(10): 2262 doi: 10.1016/j.apt.2019.07.006
|
[58] |
Ajeel R K, Salim W S I, Sopian K, et al. Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: An experimental and numerical study. Int J Heat Mass Transf, 2019, 145: 118806 doi: 10.1016/j.ijheatmasstransfer.2019.118806
|
[59] |
Mohan M N, Thomas S, Sobhan C B. Convective heat transfer studies in dilute alumina and silica nanofluids flowing through a channel using Mach-Zehnder interferometry. Heat Mass Transf, 2020, 56(6): 1793 doi: 10.1007/s00231-019-02792-x
|
[60] |
Nagarajan F C, Kannaiyan S, Boobalan C. Intensification of heat transfer rate using alumina-silica nanocoolant. Int J Heat Mass Transf, 2020, 149: 119127 doi: 10.1016/j.ijheatmasstransfer.2019.119127
|
[61] |
Shah T R, Ali H M, Janjua M M. On aqua-based silica (SiO2–water) nanocoolant: Convective thermal potential and experimental precision evaluation in aluminum tube radiator. Nanomaterials, 2020, 10(9): 1736 doi: 10.3390/nano10091736
|
[62] |
Pourrajab R, Noghrehabadi A, Behbahani M. Thermo-hydraulic performance of mesoporous silica with Cu nanoparticles in helically grooved tube. Appl Therm Eng, 2021, 185: 116436 doi: 10.1016/j.applthermaleng.2020.116436
|
[63] |
Nagarajan F C, Kannaiyan S K, Boobalan C. A proficient approach to enhance heat transfer using cupric oxide/silica hybrid nanoliquids. J Therm Anal Calorim, 2021: 1
|
[64] |
Vassallo P, Kumar R, D’Amico S. Pool boiling heat transfer experiments in silica-water nano-fluids. Int J Heat Mass Transf, 2004, 47(2): 407 doi: 10.1016/S0017-9310(03)00361-2
|
[65] |
Milanova D, Kumar R. Role of ions in pool boiling heat transfer of pure and silica nanofluids. Appl Phys Lett, 2005, 87(23): 233107 doi: 10.1063/1.2138805
|
[66] |
Kim S J, Bang I C, Buongiorno J, et al. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl Phys Lett, 2006, 89(15): 153107 doi: 10.1063/1.2360892
|
[67] |
Kim S J, Bang I C, Buongiorno J, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf, 2007, 50(19-20): 4105 doi: 10.1016/j.ijheatmasstransfer.2007.02.002
|
[68] |
Milanova D, Kumar R. Heat transfer behavior of silica nanoparticles in pool boiling experiment. J Heat Transf, 2008, 130(4): 042401 doi: 10.1115/1.2787020
|
[69] |
Rostamian F, Etesami N. Pool boiling characteristics of silica/water nanofluid and variation of heater surface roughness in domain of time. Int Commun Heat Mass Transf, 2018, 95: 98 doi: 10.1016/j.icheatmasstransfer.2018.04.003
|
[70] |
Tian Z, Etedali S, Afrand M, et al. Experimental study of the effect of various surfactants on surface sediment and pool boiling heat transfer coefficient of silica/DI water nano-fluid. Powder Technol, 2019, 356: 391 doi: 10.1016/j.powtec.2019.08.049
|
[71] |
Norouzipour A, Abdollahi A, Afrand M. Experimental study of the optimum size of silica nanoparticles on the pool boiling heat transfer coefficient of silicon oxide/deionized water nanofluid. Powder Technol, 2019, 345: 728 doi: 10.1016/j.powtec.2019.01.034
|
[72] |
Lee M S, Kam D H, Jeong Y H. An experimental observation of the effects of submicron- and micron-sized mesoporous silica particles on the critical heat flux. Int J Heat Mass Transf, 2020, 160: 120182 doi: 10.1016/j.ijheatmasstransfer.2020.120182
|
[73] |
Zafar S, Adil M, Azhar M, et al. Experimental and numerical study of Pool boiling and critical heat flux enhancement using water based silica Nanofluids. Heat Mass Transf, 2021, 57(10): 1593 doi: 10.1007/s00231-021-03047-4
|
[74] |
Mukherjee S, Ali N, Aljuwayhel N F, et al. Pool boiling amelioration by aqueous dispersion of silica nanoparticles. Nanomaterials, 2021, 11(8): 2138 doi: 10.3390/nano11082138
|
[75] |
Henderson K, Park Y G, Liu L, et al. Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube. Int J Heat Mass Transf, 2010, 53(5-6): 944 doi: 10.1016/j.ijheatmasstransfer.2009.11.026
|
[76] |
陸鑫, 楊峻. SiO2-DW納米流體重力熱管傳熱性能試驗研究. 現代化工, 2015, 35(11):145
Lu X, Yang J. Heat transfer characteristics of SiO2-DW nanofluid gravity heat pipe. Mod Chem Ind, 2015, 35(11): 145
|
[77] |
楊文斌, 楊峻. SiO2-乙醇納米流體重力熱管傳熱性能的試驗研究. 當代化工, 2019, 48(12):2962
Yang W B, Yang J. Experimental research on heat transfer performance of SiO2-ethanol nanofluid gravity heat pipe. Contemp Chem Ind, 2019, 48(12): 2962
|
[78] |
Kujawska A, Mulka R, Hamze S, et al. The effect of boiling in a thermosyphon on surface tension and contact angle of silica and graphene oxide nanofluids. Colloids Surf A Physicochem Eng Aspects, 2021, 627: 127082 doi: 10.1016/j.colsurfa.2021.127082
|
[79] |
Zhang D W, He Z T, Guan J, et al. Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study. Int J Heat Mass Transf, 2022, 183: 122100 doi: 10.1016/j.ijheatmasstransfer.2021.122100
|
[80] |
李亞瓊, 梁凱彥, 王靜靜, 等. 介孔二氧化硅基復合相變材料研究進展. 工程科學學報, 2020, 42(10):1229
Li Y Q, Liang K Y, Wang J J, et al. Research progress of mesoporous silica-based composite phase change materials. Chin J Eng, 2020, 42(10): 1229
|
[81] |
鐘麗敏, 楊穆, 欒奕, 等. 石蠟/二氧化硅復合相變材料的制備及其性能. 工程科學學報, 2015, 37(7):936
Zhong L M, Yang M, Luan Y, et al. Preparation and properties of paraffin/SiO2 composite phase change materials. Chin J Eng, 2015, 37(7): 936
|
[82] |
Salehi H, Hormozi F. Numerical study of silica-water based nanofluid nucleate pool boiling by two-phase Eulerian scheme. Heat Mass Transf, 2018, 54(3): 773 doi: 10.1007/s00231-017-2146-9
|
[83] |
Forrest E, Williamson E, Buongiorno J, et al. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int J Heat Mass Transf, 2010, 53(1-3): 58 doi: 10.1016/j.ijheatmasstransfer.2009.10.008
|
[84] |
Zupan?i? M, Steinbücher M, Gregor?i? P, et al. Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces. Appl Therm Eng, 2015, 91: 288 doi: 10.1016/j.applthermaleng.2015.08.026
|