Citation: | LIU Han-ze, ZHANG Jing, ZHANG Ji, ZHANG Li-feng, GE Yan-feng. First-principle study of the effect of cerium on the modification and corrosion of nonmetal inclusions in steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1516-1528. doi: 10.13374/j.issn2095-9389.2022.02.04.001 |
[1] |
王新華. 高品質冷軋薄板鋼中非金屬夾雜物控制技術. 鋼鐵, 2013, 48(9):1
Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1
|
[2] |
Zimer A M, De Carra M A S, Rios E C, et al. Initial stages of corrosion pits on AISI 1040 steel in sulfide solution analyzed by temporal series micrographs coupled with electrochemical techniques. Corros Sci, 2013, 76: 27 doi: 10.1016/j.corsci.2013.04.054
|
[3] |
Frankel G S. Pitting corrosion of metals: A review of the critical factors. J Electrochem Soc, 1998, 145(6): 2186 doi: 10.1149/1.1838615
|
[4] |
張繼, 張立峰. 稀土元素在不銹鋼中的應用及研究進展. 燕山大學學報, 2020, 44(3):267 doi: 10.3969/j.issn.1007-791X.2020.03.008
Zhang J, Zhang L F. Application and research progress of rare earth elements in stainless steels. J Yanshan Univ, 2020, 44(3): 267 doi: 10.3969/j.issn.1007-791X.2020.03.008
|
[5] |
Ghahari S M, Davenport A J, Rayment T, et al. In situ synchrotron X-ray micro-tomography study of pitting corrosion in stainless steel. Corros Sci, 2011, 53(9): 2684 doi: 10.1016/j.corsci.2011.05.040
|
[6] |
Liu C, Revilla R I, Liu Z Y, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corros Sci, 2017, 129: 82 doi: 10.1016/j.corsci.2017.10.001
|
[7] |
李亞波, 王福明, 李長榮, 等. 鈰對低硫鐵素體不銹鋼抗點蝕性能的影響. 稀土, 2010, 31(3):30 doi: 10.3969/j.issn.1004-0277.2010.03.007
Li Y B, Wang F M, Li C R, et al. Effect of cerium on pitting resistance of low sulphur ferritic stainless steels. Chin Rare Earths, 2010, 31(3): 30 doi: 10.3969/j.issn.1004-0277.2010.03.007
|
[8] |
Cai G J, Li C S. Effects of Ce on inclusions and corrosion resistance of low-nickel austenite stainless steel. Mater Corros, 2015, 66(12): 1445 doi: 10.1002/maco.201508380
|
[9] |
習小軍, 楊樹峰, 李京社, 等. 含鈰304不銹鋼夾雜物改性及耐腐蝕性能優化. 鋼鐵, 2020, 55(1):20
Xi X J, Yang S F, Li J S, et al. Inclusion modification and corrosion resistance optimization of 304 stainless steel containing cerium. Iron Steel, 2020, 55(1): 20
|
[10] |
Cai G J, Pang Y T, Huang Y R, et al. Roles of inclusion, texture and grain boundary in corrosion resistance of low-nickel austenite stainless steel containing Ce. ISIJ Int, 2019, 59(12): 2302 doi: 10.2355/isijinternational.ISIJINT-2019-248
|
[11] |
Liu X, Wang L M. Effect of Ce on the inclusions and pitting resistance of 2Cr13 stainless steel. Adv Mater Res, 2012, 602-604: 376 doi: 10.4028/www.scientific.net/AMR.602-604.376
|
[12] |
Zhang J, Su C M, Chen X P, et al. First-principles study on pitting corrosion of Al deoxidation stainless steel with rare earth element (La) treatment. Mater Today Commun, 2021, 27: 102204 doi: 10.1016/j.mtcomm.2021.102204
|
[13] |
Li W, Li D Y. Variations of work function and corrosion behaviors of deformed copper surfaces. Appl Surf Sci, 2005, 240(1-4): 388 doi: 10.1016/j.apsusc.2004.07.017
|
[14] |
侯延輝, 劉林利, 李光強, 等. 鋼中復合夾雜物/鋼基體的電勢差與電偶腐蝕的關系 // 第十二屆中國鋼鐵年會論文集. 北京, 2019:510
Hou Y H, Liu L L, Li G Q, et al. The correlation between potential difference and galvanic corrosion of composite inclusions/steel matrix in steel // The 12th Proceedings of China Iron & Steel Annual Meeting. Beijing, 2019: 510
|
[15] |
Kresse C, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter, 1996, 54(16): 11169 doi: 10.1103/PhysRevB.54.11169
|
[16] |
Sweeney J S, Heinz D L. Compression of α-MnS (alabandite) and a new high-pressure phase. Phys Chem Miner, 1993, 20(1): 63
|
[17] |
Bl?chl P E. Projector augmented-wave method. Phys Rev B, 1994, 50(24): 17953 doi: 10.1103/PhysRevB.50.17953
|
[18] |
Cao Y X, Li G Q, Hou Y H, et al. DFT study on the mechanism of inclusion-induced initial pitting corrosion of Al?Ti?Ca complex deoxidized steel with Ce treatment. Phys B Condens Matter, 2019, 558: 10 doi: 10.1016/j.physb.2019.01.027
|
[19] |
?nmark N, Karasev A, J?nsson P G. The effect of different non-metallic inclusions on the machinability of steels. Mater (Basel Switz)
|
[20] |
Wilson W G, Kay D A R, Vahed A. The use of thermodynamics and phase equilibria to predict the behavior of the rare earth elements in steel. JOM, 1974, 26(5): 14 doi: 10.1007/BF03355873
|
[21] |
Mattsson T R, Mattsson A E. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo. Phys Rev B, 2002, 66(21): 214110 doi: 10.1103/PhysRevB.66.214110
|
[22] |
Liu X J, Yang J C, Zhang F, et al. Experimental and DFT study on cerium inclusions in clean steels. J Rare Earths, 2021, 39(4): 477 doi: 10.1016/j.jre.2020.07.021
|
[23] |
Michaelson H B. The work function of the elements and its periodicity. J Appl Phys, 1977, 48(11): 4729 doi: 10.1063/1.323539
|
[24] |
Tyson W R, Miller W A. Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf Sci, 1977, 62(1): 267 doi: 10.1016/0039-6028(77)90442-3
|
[25] |
Hou Y H, Wang J R, Liu L L, et al. Mechanism of pitting corrosion induced by inclusions in Al-Ti-Mg deoxidized high strength pipeline steel. Micron, 2020, 138: 102898 doi: 10.1016/j.micron.2020.102898
|
[26] |
Skriver H L, Rosengaard N M. Surface energy and work function of elemental metals. Phys Rev B Condens Matter, 1992, 46(11): 7157 doi: 10.1103/PhysRevB.46.7157
|
[27] |
Chamati H, Papanicolaou N I, Mishin Y, et al. Embedded-atom potential for Fe and its application to self-diffusion on Fe(1 0 0). Surf Sci, 2006, 600(9): 1793 doi: 10.1016/j.susc.2006.02.010
|
[28] |
Zhang B, Wang J, Wu B, et al. Quasi-in-situ ex-polarized TEM observation on dissolution of MnS inclusions and metastable pitting of austenitic stainless steel. Corros Sci, 2015, 100: 295 doi: 10.1016/j.corsci.2015.08.009
|
[29] |
Jeon S H, Kim S T, Lee I S, et al. Effects of sulfur addition on pitting corrosion and machinability behavior of super duplex stainless steel containing rare earth metals: Part 2. Corros Sci, 2010, 52(10): 3537 doi: 10.1016/j.corsci.2010.07.002
|
[30] |
Zhang X, Wei W Z, Cheng L, et al. Effects of niobium and rare earth elements on microstructure and initial marine corrosion behavior of low-alloy steels. Appl Surf Sci, 2019, 475: 83 doi: 10.1016/j.apsusc.2018.12.243
|
[31] |
Wang C G, Ma R Y, Zhou Y T, et al. Effects of rare earth modifying inclusions on the pitting corrosion of 13Cr4Ni martensitic stainless steel. J Mater Sci Technol, 2021, 93: 232 doi: 10.1016/j.jmst.2021.03.014
|