<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
LIU Han-ze, ZHANG Jing, ZHANG Ji, ZHANG Li-feng, GE Yan-feng. First-principle study of the effect of cerium on the modification and corrosion of nonmetal inclusions in steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1516-1528. doi: 10.13374/j.issn2095-9389.2022.02.04.001
Citation: LIU Han-ze, ZHANG Jing, ZHANG Ji, ZHANG Li-feng, GE Yan-feng. First-principle study of the effect of cerium on the modification and corrosion of nonmetal inclusions in steel[J]. Chinese Journal of Engineering, 2022, 44(9): 1516-1528. doi: 10.13374/j.issn2095-9389.2022.02.04.001

First-principle study of the effect of cerium on the modification and corrosion of nonmetal inclusions in steel

doi: 10.13374/j.issn2095-9389.2022.02.04.001
More Information
  • Nonmetallic inclusions in steel significantly influence the steel life, quality, toughness, and corrosion resistance. Pitting corrosion is the most common type of localized corrosion in stainless steel. Rare-earth elements, which are key materials in the metallurgical sector, largely influence the modification of sulfur (S) and oxygen (O) inclusions in steel. Numerous experimental studies have been conducted on the corrosion of the rare-earth metal cerium (Ce); however, studies on the microscopic-scale mechanism are few. In this study, in situ corrosion observation and the first-principle calculations based on density functional theory were applied to investigate the effects of the rare-earth element cerium on inclusions in J5 stainless steel and the inclusion-induced corrosion process. The changes in the inclusion composition and the primary types of inclusions in the steel were investigated by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The results show that CeAlO3?Ce2O2S, Ce2O3?Ce2O2S, and MnS are representative inclusions. MnS and other oxide inclusions in stainless steel were treated with Ce to generate stable Ce2O3, Ce2O2S, and CeAlO3 inclusions, according to formation energy calculations. The surface energy of the Fe (100)-2 plane is measured as 2.4374 J·m?2, and the work function of this crystal plane is predicted to be 4.7352 eV. The crystal plane stability was examined according to the surface energy. The work functions and potential differences between the inclusion and the steel matrix were analyzed to compare the trend of pitting corrosion induced by different Ce-containing inclusions, and the influences of different atomic positions, atomic numbers, and different slab models on the work function were explored. Compared with the electronic work function of the Fe (100)-2 surface, the potential difference between MnS and the three modified inclusions CeS, Ce2O3, and Ce2O2S is typically less than zero, and the potential difference of CeAlO3 is about 0 eV. The average work function of the crystal plane with a large number of nonmetal atoms such as O and S is higher. Ce addition reduces the work function of the crystal plane, and the molecular mechanism of pitting corrosion according to different crystal planes and termination planes of inclusions is revealed. The five types of inclusions and the steel matrix are in the following order: CeAlO3>Fe>MnS>CeS>Ce2O2S>Ce2O3. The experimental findings on composite inclusions in stainless steel reveal that Ce2O3 has the highest chance of pitting corrosion, and CeAlO3 can significantly improve steel corrosion resistance.

     

  • loading
  • [1]
    王新華. 高品質冷軋薄板鋼中非金屬夾雜物控制技術. 鋼鐵, 2013, 48(9):1

    Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1
    [2]
    Zimer A M, De Carra M A S, Rios E C, et al. Initial stages of corrosion pits on AISI 1040 steel in sulfide solution analyzed by temporal series micrographs coupled with electrochemical techniques. Corros Sci, 2013, 76: 27 doi: 10.1016/j.corsci.2013.04.054
    [3]
    Frankel G S. Pitting corrosion of metals: A review of the critical factors. J Electrochem Soc, 1998, 145(6): 2186 doi: 10.1149/1.1838615
    [4]
    張繼, 張立峰. 稀土元素在不銹鋼中的應用及研究進展. 燕山大學學報, 2020, 44(3):267 doi: 10.3969/j.issn.1007-791X.2020.03.008

    Zhang J, Zhang L F. Application and research progress of rare earth elements in stainless steels. J Yanshan Univ, 2020, 44(3): 267 doi: 10.3969/j.issn.1007-791X.2020.03.008
    [5]
    Ghahari S M, Davenport A J, Rayment T, et al. In situ synchrotron X-ray micro-tomography study of pitting corrosion in stainless steel. Corros Sci, 2011, 53(9): 2684 doi: 10.1016/j.corsci.2011.05.040
    [6]
    Liu C, Revilla R I, Liu Z Y, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corros Sci, 2017, 129: 82 doi: 10.1016/j.corsci.2017.10.001
    [7]
    李亞波, 王福明, 李長榮, 等. 鈰對低硫鐵素體不銹鋼抗點蝕性能的影響. 稀土, 2010, 31(3):30 doi: 10.3969/j.issn.1004-0277.2010.03.007

    Li Y B, Wang F M, Li C R, et al. Effect of cerium on pitting resistance of low sulphur ferritic stainless steels. Chin Rare Earths, 2010, 31(3): 30 doi: 10.3969/j.issn.1004-0277.2010.03.007
    [8]
    Cai G J, Li C S. Effects of Ce on inclusions and corrosion resistance of low-nickel austenite stainless steel. Mater Corros, 2015, 66(12): 1445 doi: 10.1002/maco.201508380
    [9]
    習小軍, 楊樹峰, 李京社, 等. 含鈰304不銹鋼夾雜物改性及耐腐蝕性能優化. 鋼鐵, 2020, 55(1):20

    Xi X J, Yang S F, Li J S, et al. Inclusion modification and corrosion resistance optimization of 304 stainless steel containing cerium. Iron Steel, 2020, 55(1): 20
    [10]
    Cai G J, Pang Y T, Huang Y R, et al. Roles of inclusion, texture and grain boundary in corrosion resistance of low-nickel austenite stainless steel containing Ce. ISIJ Int, 2019, 59(12): 2302 doi: 10.2355/isijinternational.ISIJINT-2019-248
    [11]
    Liu X, Wang L M. Effect of Ce on the inclusions and pitting resistance of 2Cr13 stainless steel. Adv Mater Res, 2012, 602-604: 376 doi: 10.4028/www.scientific.net/AMR.602-604.376
    [12]
    Zhang J, Su C M, Chen X P, et al. First-principles study on pitting corrosion of Al deoxidation stainless steel with rare earth element (La) treatment. Mater Today Commun, 2021, 27: 102204 doi: 10.1016/j.mtcomm.2021.102204
    [13]
    Li W, Li D Y. Variations of work function and corrosion behaviors of deformed copper surfaces. Appl Surf Sci, 2005, 240(1-4): 388 doi: 10.1016/j.apsusc.2004.07.017
    [14]
    侯延輝, 劉林利, 李光強, 等. 鋼中復合夾雜物/鋼基體的電勢差與電偶腐蝕的關系 // 第十二屆中國鋼鐵年會論文集. 北京, 2019:510

    Hou Y H, Liu L L, Li G Q, et al. The correlation between potential difference and galvanic corrosion of composite inclusions/steel matrix in steel // The 12th Proceedings of China Iron & Steel Annual Meeting. Beijing, 2019: 510
    [15]
    Kresse C, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter, 1996, 54(16): 11169 doi: 10.1103/PhysRevB.54.11169
    [16]
    Sweeney J S, Heinz D L. Compression of α-MnS (alabandite) and a new high-pressure phase. Phys Chem Miner, 1993, 20(1): 63
    [17]
    Bl?chl P E. Projector augmented-wave method. Phys Rev B, 1994, 50(24): 17953 doi: 10.1103/PhysRevB.50.17953
    [18]
    Cao Y X, Li G Q, Hou Y H, et al. DFT study on the mechanism of inclusion-induced initial pitting corrosion of Al?Ti?Ca complex deoxidized steel with Ce treatment. Phys B Condens Matter, 2019, 558: 10 doi: 10.1016/j.physb.2019.01.027
    [19]
    ?nmark N, Karasev A, J?nsson P G. The effect of different non-metallic inclusions on the machinability of steels. Mater (Basel Switz), 2015, 8(2): 751 doi: 10.3390/ma8020751
    [20]
    Wilson W G, Kay D A R, Vahed A. The use of thermodynamics and phase equilibria to predict the behavior of the rare earth elements in steel. JOM, 1974, 26(5): 14 doi: 10.1007/BF03355873
    [21]
    Mattsson T R, Mattsson A E. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo. Phys Rev B, 2002, 66(21): 214110 doi: 10.1103/PhysRevB.66.214110
    [22]
    Liu X J, Yang J C, Zhang F, et al. Experimental and DFT study on cerium inclusions in clean steels. J Rare Earths, 2021, 39(4): 477 doi: 10.1016/j.jre.2020.07.021
    [23]
    Michaelson H B. The work function of the elements and its periodicity. J Appl Phys, 1977, 48(11): 4729 doi: 10.1063/1.323539
    [24]
    Tyson W R, Miller W A. Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surf Sci, 1977, 62(1): 267 doi: 10.1016/0039-6028(77)90442-3
    [25]
    Hou Y H, Wang J R, Liu L L, et al. Mechanism of pitting corrosion induced by inclusions in Al-Ti-Mg deoxidized high strength pipeline steel. Micron, 2020, 138: 102898 doi: 10.1016/j.micron.2020.102898
    [26]
    Skriver H L, Rosengaard N M. Surface energy and work function of elemental metals. Phys Rev B Condens Matter, 1992, 46(11): 7157 doi: 10.1103/PhysRevB.46.7157
    [27]
    Chamati H, Papanicolaou N I, Mishin Y, et al. Embedded-atom potential for Fe and its application to self-diffusion on Fe(1 0 0). Surf Sci, 2006, 600(9): 1793 doi: 10.1016/j.susc.2006.02.010
    [28]
    Zhang B, Wang J, Wu B, et al. Quasi-in-situ ex-polarized TEM observation on dissolution of MnS inclusions and metastable pitting of austenitic stainless steel. Corros Sci, 2015, 100: 295 doi: 10.1016/j.corsci.2015.08.009
    [29]
    Jeon S H, Kim S T, Lee I S, et al. Effects of sulfur addition on pitting corrosion and machinability behavior of super duplex stainless steel containing rare earth metals: Part 2. Corros Sci, 2010, 52(10): 3537 doi: 10.1016/j.corsci.2010.07.002
    [30]
    Zhang X, Wei W Z, Cheng L, et al. Effects of niobium and rare earth elements on microstructure and initial marine corrosion behavior of low-alloy steels. Appl Surf Sci, 2019, 475: 83 doi: 10.1016/j.apsusc.2018.12.243
    [31]
    Wang C G, Ma R Y, Zhou Y T, et al. Effects of rare earth modifying inclusions on the pitting corrosion of 13Cr4Ni martensitic stainless steel. J Mater Sci Technol, 2021, 93: 232 doi: 10.1016/j.jmst.2021.03.014
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)  / Tables(9)

    Article views (2513) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频