Citation: | WU Si-kan, XIAO Bin, WANG Xin, ZHANG Biao, WANG Bo, SONG Yong-yi. Simulation and optimization of temperature control and industrial design of hydrogen production of biomass via microwaves[J]. Chinese Journal of Engineering, 2023, 45(4): 673-680. doi: 10.13374/j.issn2095-9389.2022.01.27.001 |
[1] |
王安杰, 王瑤, 遇治權, 等. 生物質油提質加氫脫氧催化劑研究進展. 大連理工大學學報, 2016, 56(3):321 doi: 10.7511/dllgxb201603016
Wang A J, Wang Y, Yu Z Q, et al. Advances in hydrodeoxygenation catalysts for upgrading bio-oils. J Dalian Univ Technol, 2016, 56(3): 321 doi: 10.7511/dllgxb201603016
|
[2] |
顏蓓蓓, 王建, 劉彬, 等. 生物油金屬水熱原位加氫提質技術研究進展. 化工學報, 2021, 72(4):1783
Yan B B, Wang J, Liu B, et al. Research progress of bio-oil metal hydrothermal in situ hydrogenation technology. CIESC J, 2021, 72(4): 1783
|
[3] |
顧帥, 楊洪雪, 苗瑋, 等. 生物油精制技術研究進展. 林產化學與工業, 2012, 32(2):55
Gu S, Yang H X, Miao W, et al. Progress in bio-oil refining technology. Chem Ind For Prod, 2012, 32(2): 55
|
[4] |
Demirba? A. Relationships between lignin contents and heating values of biomass. Energy Convers Manag, 2001, 42(2): 183 doi: 10.1016/S0196-8904(00)00050-9
|
[5] |
?ukajtis R, Ho?owacz I, Kucharska K, et al. Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev, 2018, 91: 665 doi: 10.1016/j.rser.2018.04.043
|
[6] |
Show K Y, Yan Y G, Ling M, et al. Hydrogen production from algal biomass-Advances, challenges and prospects. Bioresour Technol, 2018, 257: 290 doi: 10.1016/j.biortech.2018.02.105
|
[7] |
Li G X, Wang S, Zhao J G, et al. Life cycle assessment and techno-economic analysis of biomass-to-hydrogen production with methane tri-reforming. Energy, 2020, 199: 117488 doi: 10.1016/j.energy.2020.117488
|
[8] |
方向晨, 張忠清, 翁延博, 等. 煤炭的微波干餾技術研究進展. 化工進展, 2013, 32(8):1725
Fang X C, Zhang Z Q, Weng Y B, et al. Research progress of microwave pyrolysis technology for coal. Chem Ind Eng Prog, 2013, 32(8): 1725
|
[9] |
趙闖, 蔣立敬. 煤炭低溫干餾微波加熱技術的研究進展. 當代化工, 2013, 42(12):1706 doi: 10.3969/j.issn.1671-0460.2013.12.032
Zhao C, Jiang L J. Research progress in microwave pyrolysis for coal in the low-temperature carbonization. Contemp Chem Ind, 2013, 42(12): 1706 doi: 10.3969/j.issn.1671-0460.2013.12.032
|
[10] |
彭金輝, 劉秉國, 張利波, 等. 高溫微波冶金反應器的研究現狀及發展趨勢. 中國有色金屬學報, 2011, 21(10):2607 doi: 10.19476/j.ysxb.1004.0609.2011.10.026
Peng J H, Liu B G, Zhang L B, et al. Research status and trend of high-temperature microwave metallurgy reactor. Chin J Nonferrous Met, 2011, 21(10): 2607 doi: 10.19476/j.ysxb.1004.0609.2011.10.026
|
[11] |
蔡衛權, 李會泉, 張懿. 微波技術在冶金中的應用. 過程工程學報, 2005, 5(2):228 doi: 10.3321/j.issn:1009-606X.2005.02.026
Cai W Q, Li H Q, Zhang Y. Recent development of microwave radiation application in metallurgical processes. Chin J Process Eng, 2005, 5(2): 228 doi: 10.3321/j.issn:1009-606X.2005.02.026
|
[12] |
馮康露, 陳晉, 陳菓, 等. 微波加熱應用于冶金工藝的研究進展. 礦冶, 2018, 27(2):63 doi: 10.3969/j.issn.1005-7854.2018.02.014
Feng K L, Chen J, Chen G, et al. Application and research progress of microwave heating technology in typical metallurgical process. Min Metall, 2018, 27(2): 63 doi: 10.3969/j.issn.1005-7854.2018.02.014
|
[13] |
Taheri-Shakib J, Kantzas A. A comprehensive review of microwave application on the oil shale: Prospects for shale oil production. Fuel, 2021, 305: 121519 doi: 10.1016/j.fuel.2021.121519
|
[14] |
Meyer D H, Cox K C, Fatemi F K, et al. Digital communication with Rydberg atoms and amplitude-modulated microwave fields. Appl Phys Lett, 2018, 112(21): 211108 doi: 10.1063/1.5028357
|
[15] |
吳淺耶, 張晨曦, 孫康, 等. 一種可溶性卟啉MOF的微波輔助合成及其光催化性能. 化學學報, 2020, 78(7):688 doi: 10.6023/A20050141
Wu Q Y, Zhang C X, Sun K, et al. Microwave-assisted synthesis and photocatalytic performance of a soluble porphyrinic MOF. Acta Chimica Sin, 2020, 78(7): 688 doi: 10.6023/A20050141
|
[16] |
劉樹剛, 鄧文義, 蘇亞欣, 等. 微波輻射下污泥殘渣催化甲烷裂解制氫. 化工進展, 2014, 33(12):3405
Liu S G, Deng W Y, Su Y X, et al. Microwave-assisted methane decomposition over pyrolysis residue of sewage sludge for hydrogen production. Chem Ind Eng Prog, 2014, 33(12): 3405
|
[17] |
Kim D, Kim G, Oh D Y, et al. Enhanced hydrogen production from anaerobically digested sludge using microwave assisted pyrolysis. Fuel, 2022, 314: 123091 doi: 10.1016/j.fuel.2021.123091
|
[18] |
Rincón R, Mu?oz J, Morales-Calero F J, et al. Assessment of two atmospheric-pressure microwave plasma sources for H2 production from ethanol decomposition. Appl Energy, 2021, 294: 116948 doi: 10.1016/j.apenergy.2021.116948
|
[19] |
黃銘. 微波與顆粒物質相互作用的機理及應用研究[學位論文]. 昆明: 昆明理工大學, 2006
Huang M. Mechanism and Application of Interaction between Microwave and Granular Materials [Dissertation]. Kunming: Kunming University of Science and Technology, 2006
|
[20] |
吳斯侃, 宋永一, 王鑫, 等. 物質介電特性對微波加熱影響研究進展. 當代化工, 2020, 49(9):1987 doi: 10.3969/j.issn.1671-0460.2020.09.035
Wu S K, Song Y Y, Wang X, et al. Research progress in influence of dielectric properties of materials on microwave heating. Contemp Chem Ind, 2020, 49(9): 1987 doi: 10.3969/j.issn.1671-0460.2020.09.035
|
[21] |
Lv S N, Zeng Y J, Wen J, et al. Estimation of penetration depth from soil effective temperature in microwave radiometry. Remote Sens, 2018, 10(4): 519 doi: 10.3390/rs10040519
|
[22] |
Meredith R. Engineers' handbook of industrial microwave heating. Power Eng J, 1999, 13(1): 3 doi: 10.1049/pe:19990102
|
[23] |
Portis A M. Electromagnetic Fields: Sources and Media. New York: John Wiley & Sons Inc, 1978
|
[24] |
Sokolichin A, Eigenberger G, Lapin A, et al. Dynamic numerical simulation of gas-liquid two-phase flows Euler/Euler versus Euler/Lagrange. Chem Eng Sci, 1997, 52(4): 611 doi: 10.1016/S0009-2509(96)00425-3
|
[25] |
Senior T B A. Impedance boundary conditions for imperfectly conducting surfaces. Appl sci Res, 1960, 8(1): 418 doi: 10.1007/BF02920074
|
[26] |
Hossan M R, Dutta P. Effects of temperature dependent properties in electromagnetic heating. Int J Heat Mass Transf, 2012, 55(13-14): 3412 doi: 10.1016/j.ijheatmasstransfer.2012.02.072
|
[27] |
Dressler M, Edwards B J, ?ttinger H C. Macroscopic thermodynamics of flowing polymeric liquids. Rheol Acta, 1999, 38(2): 117 doi: 10.1007/s003970050162
|
[28] |
吳逸民, 趙增立, 李海濱, 等. 生物質主要組分低溫熱解研究. 燃料化學學報, 2009, 37(4):427 doi: 10.3969/j.issn.0253-2409.2009.04.008
Wu Y M, Zhao Z L, Li H B, et al. Low temperature pyrolysis characteristics of major components of biomass. J Fuel Chem Technol, 2009, 37(4): 427 doi: 10.3969/j.issn.0253-2409.2009.04.008
|
[29] |
張軍, 范志林, 林曉芬, 徐益謙. 生物質快速熱解過程中產物的在線測定. 東南大學學報(自然科學版), 2005, 35(1):16
Zhang J, Fan Z L, Lin X F, et al. Online measurement of products during fast pyrolysis of biomass. J Southeast Univ (Nat Sci Ed)
|
[30] |
李水清, 李愛民, 嚴建華, 等. 生物質廢棄物在回轉窯內熱解研究——Ⅰ. 熱解條件對熱解產物分布的影響. 太陽能學報, 2000, 21(4):333
Li S Q, Li A M, Yan J H, et al. Pyrolysis of the biomass wastes pyrolysis in a rotary kiln ⅰ: Influences of reaction conditions on pyrolysis product distribution. Acta Energiae Solaris Sin, 2000, 21(4): 333
|
[31] |
Bu Q, Lei H W, Ren S J, et al. Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresour Technol, 2011, 102(13): 7004 doi: 10.1016/j.biortech.2011.04.025
|
[32] |
Carlson T R, Tompsett G A, Conner W C, et al. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal, 2009, 52(3): 241 doi: 10.1007/s11244-008-9160-6
|
[33] |
Kostas E T, Durán-Jiménez G, Shepherd B J, et al. Microwave pyrolysis of olive pomace for bio-oil and bio-char production. Chem Eng J, 2020, 387: 123404 doi: 10.1016/j.cej.2019.123404
|
[34] |
Zhang J, Tahmasebi A, Omoriyekomwan J E, et al. Direct synthesis of hollow carbon nanofibers on bio-char during microwave pyrolysis of pine nut shell. J Anal Appl Pyrolysis, 2018, 130: 142 doi: 10.1016/j.jaap.2018.01.016
|
[35] |
Huang F, Tahmasebi A, Maliutina K, et al. Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways. Bioresour Technol, 2017, 245: 1067 doi: 10.1016/j.biortech.2017.08.093
|
[36] |
Brown C E. Coefficient of Variation. Berlin: Springer Berlin Heidelberg, 1998
|
[37] |
Wu S K, Song Y Y, Wang X, et al. Simulation and optimization of heating rate and thermal uniformity of microwave reactor for biomass pyrolysis. Chem Eng Sci, 2022, 250: 117386 doi: 10.1016/j.ces.2021.117386
|
[38] |
Jeyapaul R, Shahabudeen P, Krishnaiah K. Quality management research by considering multi-response problems in the Taguchi method - a review. Int J Adv Manuf Technol, 2005, 26(11): 1331
|
[39] |
Ranzi E, Debiagi P E A, Frassoldati A. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. note I: Kinetic mechanism of biomass pyrolysis. ACS Sustain Chem Eng, 2017, 5(4): 2867
|
[40] |
Ranzi E, Debiagi P E A, Frassoldati A. Mathematical modeling of fast biomass pyrolysis and bio-oil formation. note II: Secondary gas-phase reactions and bio-oil formation. ACS Sustain Chem Eng, 2017, 5(4): 2882
|
[41] |
Berdugo Vilches T, Marinkovic J, Seemann M, et al. Comparing active bed materials in a dual fluidized bed biomass gasifier: Olivine, bauxite, quartz-sand, and ilmenite. Energy Fuels, 2016, 30(6): 4848 doi: 10.1021/acs.energyfuels.6b00327
|
[42] |
Zhang Z Y, Pang S S. Experimental investigation of biomass devolatilization in steam gasification in a dual fluidised bed gasifier. Fuel, 2017, 188: 628 doi: 10.1016/j.fuel.2016.10.074
|
[43] |
Schweitzer D, Gredinger A, Schmid M, et al. Steam gasification of wood pellets, sewage sludge and manure: Gasification performance and concentration of impurities. Biomass Bioenergy, 2018, 111: 308 doi: 10.1016/j.biombioe.2017.02.002
|
[44] |
Pfeifer C, Rauch R, Hofbauer H. In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Ind Eng Chem Res, 2004, 43(7): 1634 doi: 10.1021/ie030742b
|