Citation: | DUAN Zhi-wei, MAN Cheng, CUI Zhong-yu, DONG Chao-fang, WANG Xin, CUI Hong-zhi. Effect of heat treatment on the microstructure and passive behavior of 316L stainless steel fabricated by selective laser melting[J]. Chinese Journal of Engineering, 2023, 45(4): 560-568. doi: 10.13374/j.issn2095-9389.2022.01.26.002 |
[1] |
Todd I. Metallurgy: No more tears for metal 3D printing. Nature, 2017, 549(7672): 342 doi: 10.1038/549342a
|
[2] |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys. Nature, 2017, 549(7672): 365 doi: 10.1038/nature23894
|
[3] |
Liang X, Hor A, Robert C, et al. High cycle fatigue behavior of 316L steel fabricated by laser powder bed fusion: Effects of surface defect and loading mode. Int J Fatigue, 2022, 160: 106843 doi: 10.1016/j.ijfatigue.2022.106843
|
[4] |
Contuzzi N, Campanelli S L, Ludovico A D. 3D finite element analysis in the selective laser melting process. Int J Simul Model, 2011, 10(3): 113 doi: 10.2507/IJSIMM10(3)1.169
|
[5] |
Bertsch K M, Meric de Bellefon G, Kuehl B, et al. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L. Acta Mater, 2020, 199: 19 doi: 10.1016/j.actamat.2020.07.063
|
[6] |
Man C, Duan Z W, Cui Z Y, et al. The effect of sub-grain structure on intergranular corrosion of 316L stainless steel fabricated via selective laser melting. Mater Lett, 2019, 243: 157 doi: 10.1016/j.matlet.2019.02.047
|
[7] |
Man C, Dong C F, Liu T T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid. Appl Surf Sci, 2019, 467-468: 193 doi: 10.1016/j.apsusc.2018.10.150
|
[8] |
Sato N, Cohen M. The kinetics of anodic oxidation of iron in neutral solution: I. Steady growth region. J Electrochem Soc, 1964, 111(5): 512
|
[9] |
Vetter K J. General kinetics of passive layers on metals. Electrochimica Acta, 1971, 16(11): 1923 doi: 10.1016/0013-4686(71)85147-2
|
[10] |
MacDonald D D. The history of the Point Defect Model for the passive state: A brief review of film growth aspects. Electrochimica Acta, 2011, 56(4): 1761 doi: 10.1016/j.electacta.2010.11.005
|
[11] |
Kong D, Ni X, Dong C, et al. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells. Electrochim Acta, 2018, 276: 293 doi: 10.1016/j.electacta.2018.04.188
|
[12] |
Duan Z W, Man C, Dong C F, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: Pitting mechanism induced by gas pores. Corros Sci, 2020, 167: 108520 doi: 10.1016/j.corsci.2020.108520
|
[13] |
Deng P, Song M, Yang J, et al. On the thermal coarsening and transformation of nanoscale oxide inclusions in 316L stainless steel manufactured by laser powder bed fusion and its influence on impact toughness. Mater Sci Eng A, 2022, 835: 142690 doi: 10.1016/j.msea.2022.142690
|
[14] |
Fernández-Domene R M, Blasco-Tamarit E, García-García D M, et al. Passive and transpassive behaviour of alloy 31 in a heavy brine LiBr solution. Electrochimica Acta, 2013, 95: 1 doi: 10.1016/j.electacta.2013.02.024
|
[15] |
Betova I, Bojinov M, Laitinen T, et al. The transpassive dissolution mechanism of highly alloyed stainless steels. Corros Sci, 2002, 44(12): 2675 doi: 10.1016/S0010-938X(02)00073-2
|
[16] |
王堯, 閻笑盈, 滿成, 等. 不同打印角度SLM-Ti6Al4V組織結構及其在含氟離子溶液中的腐蝕行為. 工程科學學報, 2021, 43(5):676
Wang Y, Yan X Y, Man C, et al. Microstructure and corrosion behavior of SLM-Ti6Al4V with different fabrication angles in F--containing solutions. Chin J Eng, 2021, 43(5): 676
|
[17] |
Guitián B, Nóvoa X R, Puga B. Electrochemical Impedance Spectroscopy as a tool for materials selection: Water for haemodialysis. Electrochimica Acta, 2011, 56(23): 7772 doi: 10.1016/j.electacta.2011.03.055
|
[18] |
Gui?ón-Pina V, Igual-Mu?oz A, García-Antón J. Influence of pH on the electrochemical behaviour of a duplex stainless steel in highly concentrated LiBr solutions. Corros Sci, 2011, 53(2): 575 doi: 10.1016/j.corsci.2010.09.066
|
[19] |
Qiao Y X, Zheng Y G, Okafor P C, et al. Electrochemical behaviour of high nitrogen bearing stainless steel in acidic chloride solution: Effects of oxygen, acid concentration and surface roughness. Electrochimica Acta, 2009, 54(8): 2298 doi: 10.1016/j.electacta.2008.10.038
|
[20] |
Subba Rao R V, Wolff U, Baunack S, et al. Corrosion behaviour of the amorphous Mg65Y10Cu15Ag10 alloy. Corros Sci, 2003, 45(4): 817 doi: 10.1016/S0010-938X(02)00131-2
|
[21] |
Cheng Y F, Luo J L. Electronic structure and pitting susceptibility of passive film on carbon steel. Electrochimica Acta, 1999, 44(17): 2947 doi: 10.1016/S0013-4686(99)00011-0
|
[22] |
Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy. Corros Sci, 2010, 52(11): 3646 doi: 10.1016/j.corsci.2010.07.013
|
[23] |
Belo M D C, Hakiki N E, Ferreira M G S. Semiconducting properties of passive films formed on nickel-base alloys type alloy 600: Influence of the alloying elements. Electrochimica Acta, 1999, 44(14): 2473 doi: 10.1016/S0013-4686(98)00372-7
|
[24] |
Fattah-Alhosseini A, Soltani F, Shirsalimi F, et al. The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM). Corros Sci, 2011, 53(10): 3186 doi: 10.1016/j.corsci.2011.05.063
|
[25] |
MacDonald D D, Urquidi-Macdonald M. Theory of steady-state passive films. J Electrochem Soc, 1990, 137(8): 2395 doi: 10.1149/1.2086949
|
[26] |
Ma J, Zhang B, Fu Y, et al. Effect of cold deformation on corrosion behavior of selective laser melted 316L stainless steel bipolar plates in a simulated environment for proton exchange membrane fuel cells. Corros Sci, 2022, 201: 110257 doi: 10.1016/j.corsci.2022.110257
|