Citation: | GUO De-yong, ZHANG Chao, ZHU Tong-gong. Effect of in-situ stress on the cracking and permeability enhancement in coal seams by deep-hole cumulative blasting[J]. Chinese Journal of Engineering, 2022, 44(11): 1832-1843. doi: 10.13374/j.issn2095-9389.2022.01.25.003 |
[1] |
袁亮. 松軟低透煤層群瓦斯抽采理論與技術. 北京: 煤炭工業出版社, 2004
Yuan L. Theory and Technology of Gas Drainage and Capture in Soft Multiple Coal Seams of Low Permeability Coal. Beijing. China Coal Industry Publishing House, 2004
|
[2] |
穆朝民, 王海露, 黃文堯, 等. 高瓦斯低透氣性煤體定向聚能爆破增透機制. 巖土力學, 2013, 34(9):2496
Mu C M, Wang H L, Huang W Y, et al. Increasing permeability mechanism using directional cumulative blasting in coal seams with high concentration of gas and low permeability. Rock Soil Mech, 2013, 34(9): 2496
|
[3] |
劉健, 劉澤功, 高魁, 等. 深孔定向聚能爆破增透機制模擬試驗研究及現場應用. 巖石力學與工程學報, 2014, 33(12):2490
Liu J, Liu Z G, Gao K, et al. Experimental study and application of directional focused energy blasting in deep boreholes. Chin J Rock Mech Eng, 2014, 33(12): 2490
|
[4] |
郭德勇, 趙杰超, 張超, 等. 煤層深孔聚能爆破控制孔作用機制研究. 巖石力學與工程學報, 2018, 37(4):919
Guo D Y, Zhao J C, Zhang C, et al. Mechanism of control hole on coal crack initiation and propagation under deep-hole cumulative blasting in coal seam. Chin J Rock Mech Eng, 2018, 37(4): 919
|
[5] |
Guo D Y, Lv P F, Zhao J C, et al. Research progress on permeability improvement mechanisms and technologies of coalbed deep-hole cumulative blasting. Int J Coal Sci Technol, 2020, 7(2): 329 doi: 10.1007/s40789-020-00320-5
|
[6] |
何滿潮, 謝和平, 彭蘇萍, 等. 深部開采巖體力學研究. 巖石力學與工程學報, 2005, 24(16):2803 doi: 10.3321/j.issn:1000-6915.2005.16.001
He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803 doi: 10.3321/j.issn:1000-6915.2005.16.001
|
[7] |
謝和平. 深部巖體力學與開采理論研究進展. 煤炭學報, 2019, 44(5):1283
Xie H P. Research review of the state key research development program of China: Deep rock mechanics and mining theory. J China Coal Soc, 2019, 44(5): 1283
|
[8] |
Fairhurst C. Some challenges of deep mining. Engineering, 2017, 3(4): 527 doi: 10.1016/J.ENG.2017.04.017
|
[9] |
趙寶友, 王海東. 深孔爆破技術在高地應力低透氣性高瓦斯煤層增透防突中的適用性. 爆炸與沖擊, 2014, 34(2):145 doi: 10.11883/1001-1455(2014)02-0145-08
Zhao B Y, Wang H D. Feasibility of deep-hole blasting technology for outburst prevention and permeability enhancement in high-gas-content coal seams with low-permeability subjected to high geo-stresses. Explos Shock Waves, 2014, 34(2): 145 doi: 10.11883/1001-1455(2014)02-0145-08
|
[10] |
肖思友, 姜元俊, 劉志祥, 等. 高地應力下硬巖爆破破巖特性及能量分布研究. 振動與沖擊, 2018, 37(15):143 doi: 10.13465/j.cnki.jvs.2018.15.020
Xiao S Y, Jiang Y J, Liu Z X, et al. Hard rock blasting energy distribution and fragmentation characteristics under high earth stress. J Vib Shock, 2018, 37(15): 143 doi: 10.13465/j.cnki.jvs.2018.15.020
|
[11] |
Zhao J J, Zhang Y, Ranjith P G. Numerical modelling of blast-induced fractures in coal masses under high in situ stresses. Eng Fract Mech, 2020, 225: 106749 doi: 10.1016/j.engfracmech.2019.106749
|
[12] |
Kutter H K, Fairhurst C. On the fracture process in blasting. Int J Rock Mech Min Sci Geomech Abstr, 1971, 8(3): 181 doi: 10.1016/0148-9062(71)90018-0
|
[13] |
穆朝民. 爆炸荷載和地應力耦合作用下煤體裂紋擴展的模型實驗研究. 實驗力學, 2012, 27(4):511
Mu C M. Model investigation on coal crack growth under coupling action of blasting loads and crustal stress. J Exp Mech, 2012, 27(4): 511
|
[14] |
穆朝民, 潘飛. 煤體在爆炸荷載和地應力耦合作用下裂紋擴展的數值模擬. 高壓物理學報, 2013, 27(3):403 doi: 10.11858/gywlxb.2013.03.014
Mu C M, Pan F. Numerical study on the damage of the coal under blasting loads coupled with geostatic stress. Chin J High Press Phys, 2013, 27(3): 403 doi: 10.11858/gywlxb.2013.03.014
|
[15] |
陳明, 盧文波, 周創兵, 等. 初始地應力對隧洞開挖爆生裂隙區的影響研究. 巖土力學, 2009, 30(8):2254 doi: 10.3969/j.issn.1000-7598.2009.08.009
Chen M, Lu W B, Zhou C B, et al. Influence of initial in situ stress on blasting-induced cracking zone in tunnel excavation. Rock Soil Mech, 2009, 30(8): 2254 doi: 10.3969/j.issn.1000-7598.2009.08.009
|
[16] |
Tao J, Yang X G, Li H T, et al. Effects of in-situ stresses on dynamic rock responses under blast loading. Mech Mater, 2020, 145: 103374 doi: 10.1016/j.mechmat.2020.103374
|
[17] |
Yang L Y, Ding C X. Fracture mechanism due to blast-imposed loading under high static stress conditions. Int J Rock Mech Min Sci, 2018, 107: 150 doi: 10.1016/j.ijrmms.2018.04.039
|
[18] |
Yang R S, Ding C X, Li Y L, et al. Crack propagation behavior in slit charge blasting under high static stress conditions. Int J Rock Mech Min Sci, 2019, 119: 117 doi: 10.1016/j.ijrmms.2019.05.002
|
[19] |
Lu W B, Yang J H, Yan P, et al. Dynamic response of rock mass induced by the transient release of in situ stress. Int J Rock Mech Min Sci, 2012, 53: 129 doi: 10.1016/j.ijrmms.2012.05.001
|
[20] |
Zhang F P, Peng J Y, Qiu Z G, et al. Rock-like brittle material fragmentation under coupled static stress and spherical charge explosion. Eng Geol, 2017, 220: 266 doi: 10.1016/j.enggeo.2017.02.016
|
[21] |
Xiao S Y, Su L J, Jiang Y J, et al. Numerical analysis of hard rock blasting unloading effects in high in situ stress fields. Bull Eng Geol Environ, 2019, 78(2): 867 doi: 10.1007/s10064-017-1067-7
|
[22] |
郭德勇, 趙杰超, 呂鵬飛, 等. 煤層深孔聚能爆破動力效應分析與應用. 工程科學學報, 2016, 38(12):1681
Guo D Y, Zhao J C, Lü P F, et al. Dynamic effects of deep-hole cumulative blasting in coal seam and its application. Chin J Eng, 2016, 38(12): 1681
|
[23] |
吳順川. 巖石力學. 北京: 高等教育出版社, 2021
Wu S C. Rock Mechanics. Beijing: Higher Education Press, 2021
|
[24] |
Sih G C, Paris P C, Erdogan F. Crack-tip, stress-intensity factors for plane extension and plate bending problems. J Appl Mech, 1962, 29(2): 306 doi: 10.1115/1.3640546
|
[25] |
Williams J G, Ewing P D. Fracture under complex stress—The angled crack problem. Int J Fract, 1972, 8(4): 441 doi: 10.1007/BF00191106
|
[26] |
謝和平, 鞠楊, 黎立云. 基于能量耗散與釋放原理的巖石強度與整體破壞準則. 巖石力學與工程學報, 2005, 24(17):3003 doi: 10.3321/j.issn:1000-6915.2005.17.001
Xie H P, Ju Y, Li L Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles. Chin J Rock Mech Eng, 2005, 24(17): 3003 doi: 10.3321/j.issn:1000-6915.2005.17.001
|
[27] |
Yang J H, Jiang Q H, Zhang Q B, et al. Dynamic stress adjustment and rock damage during blasting excavation in a deep-buried circular tunnel. Tunn Undergr Space Technol, 2018, 71: 591 doi: 10.1016/j.tust.2017.10.010
|
[28] |
Tao M, Li X B, Wu C Q. Characteristics of the unloading process of rocks under high initial stress. Comput Geotech, 2012, 45: 83 doi: 10.1016/j.compgeo.2012.05.002
|
[29] |
Livermore Software Technology Corporation. LS-DYNA keyword users manual: version 971 [Z/OL]. LSTC (2007-05)[2022-01-25].https://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna-971/view
|
[30] |
張建國. 平頂山礦區深井動力災害災變機理及防治關鍵技術研究[學位論文]. 徐州: 中國礦業大學, 2012
Zhang J G. Study on the Disaster Mechanism and Prevention Key Technologies of Deep Mine Dynamic Disasters in Pingdingshan Coal Mine [Dissertation]. Xuzhou: China University of Mining and Technology, 2012
|
[31] |
蔡美峰, 郭奇峰, 李遠, 等. 平煤十礦地應力測量及其應用. 北京科技大學學報, 2013, 35(11):1399
Cai M F, Guo Q F, Li Y, et al. In situ stress measurement and its application in the 10th Mine of Pingdingshan Coal Group. J Univ Sci Technol Beijing, 2013, 35(11): 1399
|
[32] |
王迎超, 靖洪文, 陳坤福, 等. 平頂山礦區地應力分布規律與空間區劃研究. 巖石力學與工程學報, 2014, 33(增刊1): 2620
Wang Y C, Jing H W, Chen K F, et al. Study of distribution regularities and regional division of in situ stresses for Pingdingshan mining area. Chin J Rock Mech Eng, 2014, 33(Suppl 1): 2620
|