Citation: | ZHANG Fu-jun, YANG Shu-feng, LI Jing-she, LIU Wei, WANG Tian-tian. Selection and key technologies of low-carbon steelmaking processes under the background of “Double Carbon”[J]. Chinese Journal of Engineering, 2022, 44(9): 1483-1495. doi: 10.13374/j.issn2095-9389.2021.12.29.004 |
[1] |
張雅欣, 羅薈霖, 王燦. 碳中和行動的國際趨勢分析. 氣候變化研究進展, 2021, 17(1):88
Zhang Y X, Luo H L, Wang C. Progress and trends of global carbon neutrality pledges. Clim Change Res, 2021, 17(1): 88
|
[2] |
李新創, 李冰, 霍咚梅, 等. 推進中國鋼鐵行業低碳發展的碳排放標準思考. 中國冶金, 2021, 31(6):1
Li X C, Li B, Huo D M, et al. Concerns on drafting carbon emission standard for improvement of China’s iron and steel industry with sustainable development. China Metall, 2021, 31(6): 1
|
[3] |
劉曉龍, 崔磊磊, 李彬, 等. 碳中和目標下中國能源高質量發展路徑研究. 北京理工大學學報(社會科學版), 2021, 23(3):1
Liu X L, Cui L L, Li B, et al. Research on the high-quality development path of China’s energy industry under the target of carbon neutralization. J Beijing Inst Technol Soc Sci Ed, 2021, 23(3): 1
|
[4] |
馬驥濤, 黃桂田. 中國鋼鐵行業完全能源消耗研究. 價格理論與實踐, 2018(4):17
Ma J T, Huang G T. Research on complete energy consumption in China’s steel industry. Price Theory Pract, 2018(4): 17
|
[5] |
張琦, 沈佳林, 許立松. 中國鋼鐵工業碳達峰及低碳轉型路徑. 鋼鐵, 2021, 56(10):152
Zhang Q, Shen J L, Xu L S. Carbon peak and low-carbon transition path of China’s iron and steel industry. Iron Steel, 2021, 56(10): 152
|
[6] |
張建良, 劉征建, 焦克新, 等. 煉鐵新技術及基礎理論研究進展. 工程科學學報, 2021, 43(12):1630
Zhang J L, Liu Z J, Jiao K X, et al. Progress of new technologies and fundamental theory about ironmaking. Chin J Eng, 2021, 43(12): 1630
|
[7] |
上官方欽, 劉正東, 殷瑞鈺. 鋼鐵行業“碳達峰”“碳中和”實施路徑研究. 中國冶金, 2021, 31(9):15
Shangguan F Q, Liu Z D, Yin R Y. Study on implementation path of “carbon peak” and “carbon neutrality” in steel industry in China. China Metall, 2021, 31(9): 15
|
[8] |
張春霞, 王海風, 張壽榮, 等. 中國鋼鐵工業綠色發展工程科技戰略及對策. 鋼鐵, 2015, 50(10):1
Zhang C X, Wang H F, Zhang S R, et al. Strategic study on green development of Chinese steel industry. Iron Steel, 2015, 50(10): 1
|
[9] |
王海風, 酈秀萍, 周繼程, 等. 鋼鐵工業節能技術發展現狀及趨勢. 冶金能源, 2018, 37(4):3 doi: 10.3969/j.issn.1001-1617.2018.04.001
Wang H F, Li X P, Zhou J C, et al. Status and development trend of energy saving technology of Chinese steel industry. Energy Metall Ind, 2018, 37(4): 3 doi: 10.3969/j.issn.1001-1617.2018.04.001
|
[10] |
殷瑞鈺. 冶金流程集成理論與方法. 北京: 冶金工業出版社, 2013
Yin R Y. Theory and method of metallurgical process integration. Beijing: Metallurgical Industry Press, 2013
|
[11] |
張龍強, 陳劍. 鋼鐵工業實現“碳達峰”探討及減碳建議. 中國冶金, 2021, 31(9):21
Zhang L Q, Chen J. Discussion on achieving “carbon peak” and suggestions for reducing carbon in iron and steel industry. China Metall, 2021, 31(9): 21
|
[12] |
Zhang Q, Xu J, Wang Y J, et al. Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows. Appl Energy, 2018, 209: 251 doi: 10.1016/j.apenergy.2017.10.084
|
[13] |
Wang P, Li W, Kara S. Cradle-to-cradle modeling of the future steel flow in China. Resour Conserv Recycl, 2017, 117: 45 doi: 10.1016/j.resconrec.2015.07.009
|
[14] |
den Elzen M, Fekete H, Höhne N, et al. Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030? Energy Policy, 2016, 89: 224
|
[15] |
國家統計局能源統計司. 中國能源統計年鑒2018. 北京: 中國統計出版社, 2019
Energy Statistics Department, National Bureau of Statistics. China Energy Statistics Yearbook 2018. Beijing: China Statistics Press, 2019
|
[16] |
上官方欽, 周繼程, 王海風, 等. 氣候變化與鋼鐵工業脫碳化發展. 鋼鐵, 2021, 56(5):1
Shangguan F Q, Zhou J C, Wang H F, et al. Climate change and decarbonization development of steel industry. Iron Steel, 2021, 56(5): 1
|
[17] |
Unruh G C. Understanding carbon lock-in. Energy Policy, 2000, 28(12): 817 doi: 10.1016/S0301-4215(00)00070-7
|
[18] |
Unruh G C. Escaping carbon lock-in. Energy Policy, 2002, 30(4): 317 doi: 10.1016/S0301-4215(01)00098-2
|
[19] |
張松巖. 基于綠色溢價假設的碳中和路徑研究. 當代石油石化, 2021, 29(7):44 doi: 10.3969/j.issn.1009-6809.2021.07.008
Zhang S Y. Research on carbon neutralization path based on green premium hypothesis. Petroleum Petrochem Today, 2021, 29(7): 44 doi: 10.3969/j.issn.1009-6809.2021.07.008
|
[20] |
Shan Y L, Huang Q, Guan D B, et al. China CO2 emission accounts 2016—2017. Sci Data, 2020, 7: 54 doi: 10.1038/s41597-020-0393-y
|
[21] |
邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1
Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1
|
[22] |
張琦, 張薇, 王玉潔, 等. 中國鋼鐵工業節能減排潛力及能效提升途徑. 鋼鐵, 2019, 54(2):7
Zhang Q, Zhang W, Wang Y J, et al. Potential of energy saving and emission reduction and energy efficiency improvement of China's steel industry. Iron Steel, 2019, 54(2): 7
|
[23] |
王新東, 郝良元. 現代煉鐵工藝及低碳發展方向分析. 中國冶金, 2021, 31(5):1
Wang X D, Hao L Y. Analysis of modern ironmaking technology and low-carbon development direction. China Metall, 2021, 31(5): 1
|
[24] |
Anonymous. Siemens, midrex to build largest single-module direct reduction plant. Eng Min J, 2013, 214(9): 105
|
[25] |
Wang Z, Chu M S, Li Z, et al. Fundamental study on application of gas-based shaft furnace direct reduction process to high efficiency and clean utilization of paigeite. Adv Mater Res, 2011, 233-235: 753 doi: 10.4028/www.scientific.net/AMR.233-235.753
|
[26] |
李峰, 儲滿生, 唐玨, 等. 基于LCA的煤制氣—氣基豎爐—電爐短流程和高爐—轉爐流程環境影響分析. 鋼鐵研究學報, 2020, 32(7):577
Li F, Chu M S, Tang J, et al. Environmental performance analysis of coal gasification—shaft furnace—electric furnace process and BF—BOF process based on life cycle assessment. J Iron Steel Res, 2020, 32(7): 577
|
[27] |
Poimenidis I A, Tsanakas M D, Papakosta N, et al. Enhanced hydrogen production through alkaline electrolysis using laser-nanostructured nickel electrodes. Int J Hydrog Energy, 2021, 46(75): 37162 doi: 10.1016/j.ijhydene.2021.09.010
|
[28] |
Hasan M M F, First E L, Boukouvala F, et al. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU. Comput Chem Eng, 2015, 81: 2 doi: 10.1016/j.compchemeng.2015.04.034
|
[29] |
毛艷麗, 曲余玲, 李博, 等. 鋼廠煙氣CO2捕捉技術的開發及其應用前景分析. 鋼鐵, 2016, 51(8):6
Mao Y L, Qu Y L, Li B, et al. Development and application potential analysis of carbon dioxide capture technology from flue gas in steel works. Iron Steel, 2016, 51(8): 6
|
[30] |
Saima H, Mogi Y, Haraoka T. Development of PSA technology for the separation of carbon dioxide from blast furnace gas. JFE Tech Rep, 2014, 19: 133
|
[31] |
張峰源. 基于品種鋼連鑄坯顯熱的加熱爐尾氣碳捕集系統設計與分析[學位論文]. 上海: 上海交通大學, 2018
Zhang F Y. Design and Analysis of Reheating Furnace Flue Gas Carbon Capture System Based on the Sensible Heat of Continuous Casting Slabs [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2018
|
[32] |
Park J H, Yang J, Kim D, et al. Review of recent technologies for transforming carbon dioxide to carbon materials. Chem Eng J, 2022, 427: 130980 doi: 10.1016/j.cej.2021.130980
|
[33] |
Wang X L, Sanna A, Maroto-Valer M M, et al. Carbon dioxide capture and storage by pH swing mineralization using recyclable ammonium salts and flue gas mixtures. Greenh Gases Sci Technol, 2015, 5(4): 389 doi: 10.1002/ghg.1494
|
[34] |
Xu X Z, Gu X G, Wang Z Y, et al. Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renew Sustain Energy Rev, 2019, 110: 65 doi: 10.1016/j.rser.2019.04.050
|
[35] |
馬春武, 李智, 封偉華, 等. 廢鋼價格與廢鋼比對煉鋼經濟效益的影響. 中國冶金, 2015, 25(9):6
Ma C W, Li Z, Feng W H, et al. Effect of the steelmaking benefit taken by the scrap price and scrap rate. China Metall, 2015, 25(9): 6
|
[36] |
Na H M, Gao C K, Tian M Y, et al. MFA-based analysis of CO2 emissions from typical industry in urban—As a case of steel industry. Ecol Model, 2017, 365: 45 doi: 10.1016/j.ecolmodel.2017.09.023
|
[37] |
姚聰林, 朱紅春, 姜周華, 等. 全廢鋼連續加料電弧爐短流程碳排放計算及分析. 材料與冶金學報, 2020, 19(4):259
Yao C L, Zhu H C, Jiang Z H, et al. CO2 emissions calculation and analysis of electric arc furnace with continuous feeding of only scrap. J Mater Metall, 2020, 19(4): 259
|
[38] |
劉宏強, 付建勛, 劉思雨, 等. 鋼鐵生產過程二氧化碳排放計算方法與實踐. 鋼鐵, 2016, 51(4):74
Liu H Q, Fu J X, Liu S Y, et al. Calculation methods and application of carbon dioxide emission during steel-making process. Iron Steel, 2016, 51(4): 74
|
[39] |
臧悅, 劉維廣, 張建國. 加快廢鋼利用促進鋼鐵工業節能減排. 鋼鐵研究, 2010, 38(4):43
Zang Y, Liu W G, Zhang J G. Accelerating the utilization of scrap to promote energy-saving and emission-reduction of China’s iron and steel industry. Res Iron Steel, 2010, 38(4): 43
|
[40] |
黃亮. 鋼鐵長流程和短流程生產模式環境影響對比分析. 環境保護與循環經濟, 2016, 36(4):31 doi: 10.3969/j.issn.1674-1021.2016.04.011
Huang L. Comparative analysis on environmental impact of long process and short process production mode of iron and steel. Environ Prot Circular Economy, 2016, 36(4): 31 doi: 10.3969/j.issn.1674-1021.2016.04.011
|
[41] |
上官方欽, 殷瑞鈺, 李煜, 等. 論中國發展全廢鋼電爐流程的戰略意義. 鋼鐵, 2021, 56(8):86
Shangguan F Q, Yin R Y, Li Y, et al. Dissussion on strategic significance of developing full scrap EAF process in China. Iron Steel, 2021, 56(8): 86
|
[42] |
白玫. 新中國電力工業70年發展成就. 價格理論與實踐, 2019(5):4
Bai M. 70 years of development achievements of New China's power industry. Price Theory Pract, 2019(5): 4
|
[43] |
Li J H, Provatas N, Brooks G. Kinetics of scrap melting in liquid steel. Metall Mater Trans B, 2005, 36(2): 293 doi: 10.1007/s11663-005-0031-2
|
[44] |
LI J H. Kinetics of Steel Scrap Melting in Liquid Steel Bath in an Electric Arc Furnace [Dissertation]. Hamilton: McMaster University, 2007
|
[45] |
Wright J K. Steel dissolution in quiescent and gas stirred Fe/C melts. Metall Mater Trans B, 1989, 20(3): 363 doi: 10.1007/BF02696988
|
[46] |
Specht E, Jeschar R. Kinetics of steel melting in carbon-steel alloys. Steel Res, 1993, 64(1): 28 doi: 10.1002/srin.199300978
|
[47] |
Wei G S, Zhu R, Tang T P, et al. Study on the melting characteristics of steel scrap in molten steel. Ironmak Steelmak, 2019, 46(7): 609 doi: 10.1080/03019233.2019.1609738
|
[48] |
段衛平, 楊樹峰, 李京社, 等. 中國現代電弧爐煉鋼廢鋼快速熔化技術進展. 中國冶金, 2021, 31(9):78
Duan W P, Yang S F, Li J S, et al. Development of rapid melting technology for steel scrap in modern electric arc furnace of China. China Metall, 2021, 31(9): 78
|
[49] |
Xi X J, Yang S F, Li J S, et al. Thermal simulation experiments on scrap melting in liquid steel. Ironmak Steelmak, 2020, 47(4): 442 doi: 10.1080/03019233.2018.1540522
|
[50] |
Jiao Q, Themelis N J. Mathematical modelling of heat transfer during the melting of solid particles in a liquid slag or metal bath. Can Metall Q, 1993, 32(1): 75 doi: 10.1179/cmq.1993.32.1.75
|
[51] |
Toulouecski Y N, Zinurov I Y. Fuel Arc Furnace (FAF) for Effective Scrap Melting. Singapore: Springer Briefs in Applied Sciences and Technology, 2017
|
[52] |
Steinparzer T, Haider M, Zauner F, et al. Electric arc furnace off-gas heat recovery and experience with a testing plant. Steel Res Int, 2014, 85(4): 519 doi: 10.1002/srin.201300228
|
[53] |
徐迎鐵, 李晶, 傅杰, 等. 煙道豎爐電弧爐廢鋼預熱特性研究. 鋼鐵, 2005, 40(12):31 doi: 10.3321/j.issn:0449-749X.2005.12.008
Xu Y T, Li J, Fu J, et al. Thermal characteristics of scrap preheating in finger shaft furnace. Iron Steel, 2005, 40(12): 31 doi: 10.3321/j.issn:0449-749X.2005.12.008
|
[54] |
施維枝, 楊寧川, 黃其明, 等. 電弧爐廢鋼預熱技術發展. 工業加熱, 2019, 48(6):26 doi: 10.3969/j.issn.1002-1639.2019.06.009
Shi W Z, Yang N C, Huang Q M, et al. Development of scrap preheating technology on EAF. Ind Heat, 2019, 48(6): 26 doi: 10.3969/j.issn.1002-1639.2019.06.009
|
[55] |
王新江, 翁泰祥. 從電弧煉鋼概念看中國發展ECOARC電爐. 中國鋼鐵業, 2018(3):8 doi: 10.3969/j.issn.1672-5115.2018.03.004
Wang X J, Weng T X. Development of ECOARC furnace in China from the concept of arc steelmaking. China Steel, 2018(3): 8 doi: 10.3969/j.issn.1672-5115.2018.03.004
|
[56] |
Fleischanderl A, Dorndorf M, Zauner F, et al. New benchmark for energy efficient EAF steelmaking—Quantum and heat recovery. Ironmak Steelmak, 2011, 38(7): 494 doi: 10.1179/030192311X13135947813933
|
[57] |
Memoli F, Giavani C, Grasselli A. Consteel EAF and conventional EAF: A comparison in maintenance practices. La Metallurgia Italiana, 2010, 102(7): 9
|
[58] |
朱榮, 魏光升. 電弧爐煉鋼復合吹煉攪拌強度的研究//全國煉鋼學術會議論文集. 長沙, 2016:7
Zhu R, Wei G S. Study on the composite blowing stirring intensity in EAF steelmaking process // Proceedings of National Steelmaking Conference. Changsha, 2016: 7
|
[59] |
He C L, Zhu R, Dong K, et al. Modeling of an impinging oxygen jet on molten bath surface in 150 t EAF. J Iron Steel Res Int, 2011, 18(9): 13 doi: 10.1016/S1006-706X(12)60028-4
|
[60] |
Liu F H, Zhu R, Dong K, et al. Simulation and application of bottom-blowing in electrical arc furnace steelmaking process. ISIJ Int, 2015, 55(11): 2365 doi: 10.2355/isijinternational.ISIJINT-2015-352
|
[61] |
魏光升, 朱榮, 田博涵, 等. 金屬熔池埋入式氣-固噴吹沖擊的特征規律. 工程科學學報, 2020, 42(增刊1): 47
Wei G S, Zhu R, Tian B H, et al. Impact characteristics of submerged gas-solid injection in the manufacturing process of steel. Chin J Eng, 2020, 42(Suppl 1): 47
|
[62] |
Tsutomu N, Shuji T, Osamu H, et al. Mechanism of hot metal dephosphorization by injecting lime base fluxes with oxygen into bottom blown converter. Trans Iron Steel Inst Jpn, 1983, 23(6): 513 doi: 10.2355/isijinternational1966.23.513
|
[63] |
Koin I, Kazuo A, Hiroshi S. Kinetic study on nitrogen absorption and desorption of molten iron. Trans Iron Steel Inst Jpn, 1988, 28(1): 41 doi: 10.2355/isijinternational1966.28.41
|
[64] |
張伯影, 田博涵, 魏光升. 電弧爐煉鋼流程氮含量變化及控制技術新進展. 工業加熱, 2020, 49(6):19 doi: 10.3969/j.issn.1002-1639.2020.06.005
Zhang B Y, Tian B H, Wei G S. New process of nitrogen content change and control technology in EAF steelmaking process. Ind Heat, 2020, 49(6): 19 doi: 10.3969/j.issn.1002-1639.2020.06.005
|
[65] |
Goldstein D A, Fruehan R J. Mathematical model for nitrogen control in oxygen steelmaking. Metall Mater Trans B, 1999, 30(5): 945 doi: 10.1007/s11663-999-0100-z
|
[66] |
Harashinia K, Mizoguchi S, Kajioka H. Kinetics of nitrogen disorption from low nitrogen liquid iron by blowing Ar and reducing gas mixture or by top injection of iron ore powder under reduced pressure. Tetsu-to-Hagane, 1988, 74(3): 441 doi: 10.2355/tetsutohagane1955.74.3_441
|
[67] |
Neuschütz D, Spirin D. Nitrogen removal and arc voltage increase in EAF steelmaking by methane injection into the arc. Steel Res Int, 2003, 74(1): 19 doi: 10.1002/srin.200300156
|
[68] |
Pal J. Thermodynamic analysis of nitrogen removal in EAF by DRI fines injection. Ironmak Steelmak, 2006, 33(6): 465 doi: 10.1179/174328106X149824
|
[69] |
Wei G S, Zhu R, Dong K, et al. Influence of bottom-blowing gas species on the nitrogen content in molten steel during the EAF steelmaking process. Ironmak Steelmak, 2018, 45(9): 839 doi: 10.1080/03019233.2017.1410949
|