Citation: | WANG Lu, LI Hong-xiao, QUE Biao-hua, XUE Zheng-liang. Kinetics and mechanism of the reduction–carburization processes of MoO2 to Mo2C with CO–15% CO2 mixed gases[J]. Chinese Journal of Engineering, 2023, 45(4): 551-559. doi: 10.13374/j.issn2095-9389.2021.12.27.006 |
[1] |
劉璐, 劉蕊, 杜倩倩, 等. 二維碳化鉬納米材料的制備及其析氫催化性能研究. 化工新型材料, 2021, 49(2):60 doi: 10.19817/j.cnki.issn1006-3536.2021.02.014
Liu L, Liu R, Du Q Q, et al. Research on preparation of 2D nano MoC and its electrocatalytic hydrogen evolution property. New Chem Mater, 2021, 49(2): 60 doi: 10.19817/j.cnki.issn1006-3536.2021.02.014
|
[2] |
Ouyang T, Ye Y Q, Wu C Y, et al. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew Chem Int Ed, 2019, 58(15): 4923 doi: 10.1002/anie.201814262
|
[3] |
Yan H, Xie Y, Jiao Y, et al. Holey reduced graphene oxide coupled with an Mo2N–Mo2C heterojunction for efficient hydrogen evolution. Adv Mater, 2018, 30(2): 1704156 doi: 10.1002/adma.201704156
|
[4] |
梁婷, 所艷華, 馬守濤, 等. 碳化鉬催化劑的制備及應用研究進展. 化學與粘合, 2017, 39(4):286 doi: 10.3969/j.issn.1001-0017.2017.04.014
Liang T, Suo Y H, Ma S T, et al. Research progress in preparation and application of molybdenum carbide catalyst. Chem Adhesion, 2017, 39(4): 286 doi: 10.3969/j.issn.1001-0017.2017.04.014
|
[5] |
張凱敏, 王冬冬, 閆曉麗. 碳化鉬/碳納米片復合材料的制備及析氫性能研究. 應用化工, 2020, 49(2):291 doi: 10.3969/j.issn.1671-3206.2020.02.007
Zhang K M, Wang D D, Yan X L. Preparation of molybdenum carbide/carbon nanosheets composites for hydrogen evolution reaction. Appl Chem Ind, 2020, 49(2): 291 doi: 10.3969/j.issn.1671-3206.2020.02.007
|
[6] |
楊盼, 石松, 代斌, 等. 碳化鉬納米材料的制備及電催化析氫性能. 石河子大學學報(自然科學版), 2018, 36(3):370 doi: 10.13880/j.cnki.65-1174/n.2018.03.018
Yang P, Shi S, Dai B, et al. Preparation and electro-catalytic hydrogen-evolution properties of nano-carbon molybdenum. J Shihezi Univ (Nat Sci)
|
[7] |
Kwak W J, Lau C, Shin C D, et al. A Mo2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life. ACS Nano, 2015, 9(4): 4129 doi: 10.1021/acsnano.5b00267
|
[8] |
Sun G D, Zhang G H, Yan B J, et al. Study on the reduction of commercial MoO3 with carbon black to prepare MoO2 and Mo2C nanoparticles. Int J Appl Ceram Technol, 2020, 17(11): 917
|
[9] |
Volpe L, Boudart M. Compounds of molybdenum and tungsten with high specific surface area. J Solid State Chem, 1985, 59(3): 348 doi: 10.1016/0022-4596(85)90302-0
|
[10] |
Xu C, Wang L B, Liu Z B, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater, 2015, 14(11): 1135 doi: 10.1038/nmat4374
|
[11] |
Pang M, Wang X K, Xia W, et al. Mo(VI)-melamine hybrid As single-source precursor to pure-phase β-Mo2C for the selective hydrogenation of naphthalene to tetralin. Ind Eng Chem Res, 2013, 52(12): 4564 doi: 10.1021/ie400119d
|
[12] |
Hyeon T, And M F, Suslick K S. Nanostructured molybdenum carbide: Sonochemical synthesis and catalytic properties. J Am Chem Soc, 1996, 118(23): 5492 doi: 10.1021/ja9538187
|
[13] |
Lin Z X, Wan W M, Yao S Y, et al. Cobalt-modified molybdenum carbide as a selective catalyst for hydrodeoxygenation of furfural. Appl Catal B Environ, 2018, 233: 160 doi: 10.1016/j.apcatb.2018.03.113
|
[14] |
Xiao T C, York A, Coleman K, et al. Effect of carburising agent on the structure of molybdenum carbides. J Mater Chem, 2001, 11(12): 3094 doi: 10.1039/b104011c
|
[15] |
邱澤剛, 李僑, 馬少博, 等. 碳化終溫對β-Mo2C催化喹啉加氫脫氮性能影響. 燃料化學學報, 2020, 48(3):357 doi: 10.3969/j.issn.0253-2409.2020.03.012
Qiu Z G, Li Q, Ma S B, et al. Effect of final carbonization temperature on catalytic performance of β-Mo2C in quinoline hydrodenitrogenation. J Fuel Chem Technol, 2020, 48(3): 357 doi: 10.3969/j.issn.0253-2409.2020.03.012
|
[16] |
Wang L, Xue Z L, Huang A, et al. Mechanism and kinetic study of reducing MoO3 to MoO2 with CO-15 vol % CO2 mixed gases. ACS Omega, 2019, 4(22): 20036 doi: 10.1021/acsomega.9b03171
|
[17] |
Wang L, Bu C Y, Zhang G H, et al. Study of the reduction of industrial grade MoO3 powders with CO or CO–CO2 gases to prepare MoO2. Metall Mater Trans B, 2017, 48(4): 2047 doi: 10.1007/s11663-017-0979-8
|
[18] |
宋成民, 張國華, 周國治. CO氣基還原MoO3制備MoC. 中國有色金屬學報, 2020, 30(4):906 doi: 10.11817/j.ysxb.1004.0609.2020-35731
Song C M, Zhang G H, Zhou G Z. Preparation of MoC by reducing MoO3 with CO gas. Chin J Nonferrous Met, 2020, 30(4): 906 doi: 10.11817/j.ysxb.1004.0609.2020-35731
|
[19] |
Wu Y D, Zhang G H, Xu R, et al. Fabrication of pure V2O3 powders by reducing V2O5 powders with CO-CO2 mixed gases. Ceram Int, 2019, 45(2): 2117 doi: 10.1016/j.ceramint.2018.10.117
|
[20] |
Valendar H M, Yu D W, Barati M, et al. Isothermal kinetics of reduction and carburization of WO3–NiO nanocomposite powder by CO/CO2. J Therm Anal Calorim, 2017, 128(1): 553 doi: 10.1007/s10973-016-5883-y
|
[21] |
Pan W, Ma Z J, Zhao Z X, et al. Effect of Na2O on the reduction of Fe2O3 compacts with CO/CO2. Metall Mater Trans B, 2012, 43(6): 1326 doi: 10.1007/s11663-012-9738-z
|
[22] |
李夢超, 王璐, 楊帆, 等. CO–CO2混合氣體還原WO3至WO2.72的反應行為. 中國有色金屬學報, 2022, 32(3):866
Li M C, Wang L, Yang F, et al. Reaction behavior of reduction of WO3 to WO2.72 under CO–CO2 mixed gases. Chin J Nonferrous Met, 2022, 32(3): 866
|
[23] |
Wang L, Zhang G H, Chou K C. Preparation of Mo2C by reducing ultrafine spherical β-MoO3 powders with CO or CO-CO2 gases. J Aust Ceram Soc, 2018, 54(1): 97 doi: 10.1007/s41779-017-0131-x
|
[24] |
Wang L, Zhang G H, Chou K C. Study on oxidation mechanism and kinetics of MoO2 to MoO3 in air atmosphere. Int J Refract Met Hard Mater, 2016, 57: 115 doi: 10.1016/j.ijrmhm.2016.03.001
|
[25] |
Holzwarth U, Gibson N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat Nanotechnol, 2011, 6(9): 534 doi: 10.1038/nnano.2011.145
|
[26] |
Dang J, Zhang G H, Wang L, et al. Study on reduction of MoO2 powders with CO to produce Mo2C. J Am Ceram Soc, 2016, 99: 819 doi: 10.1111/jace.14042
|
[27] |
Bale C W, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases–—recent developments. Calphad, 2009, 33(2): 295 doi: 10.1016/j.calphad.2008.09.009
|
[28] |
Yang Z H, Cai P J, Shi L, et al. A facile preparation of nanocrystalline Mo2C from graphite or carbon nanotubes. J Solid State Chem, 2006, 179(1): 29 doi: 10.1016/j.jssc.2005.09.037
|
[29] |
Ma L, Ting L R L, Molinari V, et al. Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J Mater Chem A, 2015, 3(16): 8361 doi: 10.1039/C5TA00139K
|
[30] |
Dang J, Zhang G H, Chou K C. Study on kinetics of hydrogen reduction of MoO2. Int J Refract Met Hard Mater, 2013, 41: 356 doi: 10.1016/j.ijrmhm.2013.05.009
|
[31] |
Wang L, Zhang G H, Wang J S, et al. Study on hydrogen reduction of ultrafine MoO2 to produce ultrafine Mo. J Phys Chem C, 2016, 120(7): 4097 doi: 10.1021/acs.jpcc.5b11394
|
[32] |
湯衛東, 薛向欣, 楊松陶, 等. 紅格含鉻釩鈦磁鐵礦球團礦物學和等溫氧化動力學. 工程科學學報, 2018, 40(5):548
Tang W D, Xue X X, Yang S T, et al. Mineralogical characteristics and isothermal oxidation kinetics of Hongge chromium containing vanadium and titanium magnetite pellets. Chin J Eng, 2018, 40(5): 548
|
[33] |
Almazrouei M, Janajreh I. Model-fitting approach to kinetic analysis of non-isothermal pyrolysis of pure and crude glycerol. Renew Energy, 2020, 145: 1693 doi: 10.1016/j.renene.2019.07.095
|
[34] |
Wang L, Zhang G H, Chou K C. Mechanism and kinetic study of hydrogen reduction of ultra-fine spherical MoO3 to MoO2. Int J Refract Met Hard Mater, 2016, 54: 342 doi: 10.1016/j.ijrmhm.2015.09.003
|
[35] |
Dang J, Zhang G H, Chou K C, et al. Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2. Int J Refract Met Hard Mater, 2013, 41: 216 doi: 10.1016/j.ijrmhm.2013.04.002
|