Citation: | TIAN Jing-lei, HOU Huan-yu, GUO Ze-feng, CHEN Jing, XING Yi, SU Wei. Study of the catalytic denitrification activity of a modified steelmaking sludge catalyst[J]. Chinese Journal of Engineering, 2023, 45(3): 499-508. doi: 10.13374/j.issn2095-9389.2021.12.16.006 |
[1] |
李國亮. 氮氧化物對環境的危害及污染控制技術. 山西化工, 2019, 39(5):123 doi: 10.16525/j.cnki.cn14-1109/tq.2019.05.44
Li G L. Hazards of nitrogen oxides to the environment and pollution control technology. Shanxi Chem Ind, 2019, 39(5): 123 doi: 10.16525/j.cnki.cn14-1109/tq.2019.05.44
|
[2] |
Chen G B, Wan X, Yang G H, et al. Traffic-related air pollution and lung cancer: A meta-analysis. Thorac Cancer, 2015, 6(3): 307
|
[3] |
Goldstein E, Peek N F, Parks N J, et al. Fate and distribution of inhaled nitrogen dioxide in rhesus monkeys. Am Rev Respir Dis, 1977, 115(3): 403
|
[4] |
Lai J K, Wachs I. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5–WO3/TiO2 catalysts. ACS Catal, 2018, 8(7): 6537 doi: 10.1021/acscatal.8b01357
|
[5] |
Wang C, Qin R Y, Zhang X F, et al. Safe disposal of deactivated commercial selective catalytic reduction catalyst (V2O5–MoO3/TiO2) as a low-cost and regenerable sorbent to recover gaseous elemental mercury in smelting flue gas. J Hazard Mater, 2021, 406: 124744
|
[6] |
Zhang Q J, Wu Y F, Yuan H R. Recycling strategies of spent V2O5–WO3/TiO2 catalyst: A review. Resour Conserv Recycl, 2020, 161: 104983
|
[7] |
Husnain N, Li K, Anwar M, et al. Iron oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3. Rev Chem Eng, 2018, 35(2): 239
|
[8] |
張洪亮, 龍紅明, 李家新, 等. 鐵基催化劑用于氨選擇性催化還原氮氧化物研究進展. 無機化學學報, 2019, 35(5):753 doi: 10.11862/CJIC.2019.099
Zhang H L, Long H M, Li J X, et al. Research progress in iron-based catalysts for the selective catalytic reduction of NOx by NH3. Chin J Inorg Chem, 2019, 35(5): 753 doi: 10.11862/CJIC.2019.099
|
[9] |
Zhang J, Li X C, Chen P G, et al. Research status and prospect on vanadium-based catalysts for NH3-SCR denitration. Materials (Basel)
|
[10] |
Liu Z M, Su H, Chen B H, et al. Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NOx by NH3. Chem Eng J, 2016, 299: 255 doi: 10.1016/j.cej.2016.04.100
|
[11] |
Gong Z G, Niu S, Zhang Y J, et al. Facile synthesis of porous α-Fe2O3 nanostructures from MIL-100(Fe) via sacrificial templating method, as efficient catalysts for NH3-SCR reaction. Mater Res Bull, 2020, 123: 110693 doi: 10.1016/j.materresbull.2019.110693
|
[12] |
Ciambelli P, Fortuna M E, Sannino D, et al. The influence of sulphate on the catalytic properties of V2O5–TiO2 and WO3–TiO2 in the reduction of nitric oxide with ammonia. Catal Today, 1996, 29(1-4): 161
|
[13] |
陳旺生, 張成剛, 胡發立, 等. 硫酸改性燒結礦催化劑脫硝性能研究. 燒結球團, 2019, 44(5):65 doi: 10.13403/j.sjqt.2019.05.079
Chen W S, Zhang C G, Hu F L, et al. Study on denitrification performance of sinter catalyst modified by sulphate. Sinter Pelletizing, 2019, 44(5): 65 doi: 10.13403/j.sjqt.2019.05.079
|
[14] |
Lian Z H, Shan W P, Wang M, et al. The balance of acidity and redox capability over modified CeO2 catalyst for the selective catalytic reduction of NO with NH3. J Environ Sci, 2019, 79: 273
|
[15] |
Ye D, Wang X X, Liu H, et al. Insights into the effects of sulfate species on CuO/TiO2 catalysts for NH3-SCR reactions. Mol Catal, 2020, 496: 111191 doi: 10.1016/j.mcat.2020.111191
|
[16] |
Zhao Q S, Xiang J, Sun L S, et al. Adsorption and oxidation of NH3 and NO over sol-gel-derived CuO?CeO2?MnOx/γ-Al2O3 Catalysts. Energy &Fuels, 2009, 23(3): 1539
|
[17] |
Chang H Z, Chen X Y, Li J H, et al. Improvement of activity and SO2 tolerance of Sn-modified MnOx–CeO2 catalysts for NH3-SCR at low temperatures. Environ Sci &Technol, 2013, 47(10): 5294
|
[18] |
Giuliana M, Giuseppina C, Claudio M, et al. Structural and surface characterization of pure and sulfated iron oxides. Chem Mater, 2003, 15(3): 675
|
[19] |
趙莉, 韓健, 吳洋文, 等. 釩鈦基SCR脫硝催化劑堿土金屬中毒. 化工進展, 2019, 38(3):1419 doi: 10.16085/j.issn.1000-6613.2018-0676
Zhao L, Han J, Wu Y W, et al. Study on alkaline earth metal poisoning of vanadium-titanium based SCR denitration catalyst. Chem Ind Eng Prog, 2019, 38(3): 1419 doi: 10.16085/j.issn.1000-6613.2018-0676
|
[20] |
Benson S A, Laumb J D, Crocker C R, et al. SCR catalyst performance in flue gases derived from subbituminous and lignite coals. Fuel Process Technol, 2005, 86(5): 577
|
[21] |
Xing Y, Zhang H, Su W, et al. Mineral-derived catalysts optimized for selective catalytic reduction of NOx with NH3. J Clean Prod, 2020, 289(1): 125756
|
[22] |
Jiang S Y, Zhou R X. Ce doping effect on performance of the Fe/β catalyst for NOx reduction by NH3. Fuel Process Technol, 2015, 133: 220 doi: 10.1016/j.fuproc.2015.02.004
|
[23] |
Zhang J, Huang Z W, Du Y Y, et al. Identification of active sites over Fe2O3-based architecture: The promotion effect of H2SO4 erosion synthetic protocol. ACS Appl Energy Mater, 2018, 1(6): 2385 doi: 10.1021/acsaem.8b00353
|
[24] |
陳鑫, 歸柯庭, 顧少宸. 改性菱鐵礦催化劑的催化脫硝活性及抗硫性研究. 燃料化學學報, 2019, 47(3):370 doi: 10.3969/j.issn.0253-2409.2019.03.016
Chen X, Gui K T, Gu S C. Catalytic denitration activity and sulfur resistance of modified siderite catalysts. J Fuel Chem Technol, 2019, 47(3): 370 doi: 10.3969/j.issn.0253-2409.2019.03.016
|
[25] |
Du H, Han Z T, Wang Q M, et al. Effects of ferric and Manganese precursors on catalytic activity of Fe–Mn/TiO2 catalysts for selective reduction of NO with ammonia at low temperature. Environ Sci Pollut Res Int, 2020, 27(32): 40870 doi: 10.1007/s11356-020-10073-y
|
[26] |
Xu T F, Wu X D, Liu X S, et al. Effect of Barium sulfate modification on the SO2 tolerance of V2O5/TiO2 catalyst for NH3-SCR reaction. J Environ Sci, 2017, 57: 110
|
[27] |
Liu F D, Shan W P, Lian Z H, et al. The smart surface modification of Fe2O3 by WOx for significantly promoting the selective catalytic reduction of NOx with NH3. Appl Catal B Environ, 2018, 230: 165 doi: 10.1016/j.apcatb.2018.02.052
|