<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 45 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
GAO Feng, YANG Gen, XIONG Xin, ZHOU Ke-ping, LI Cong, LI Jie-lin. Experimental study on the dynamic mechanical characteristics of slope rock under low-temperature conditions[J]. Chinese Journal of Engineering, 2023, 45(2): 171-181. doi: 10.13374/j.issn2095-9389.2021.11.26.004
Citation: GAO Feng, YANG Gen, XIONG Xin, ZHOU Ke-ping, LI Cong, LI Jie-lin. Experimental study on the dynamic mechanical characteristics of slope rock under low-temperature conditions[J]. Chinese Journal of Engineering, 2023, 45(2): 171-181. doi: 10.13374/j.issn2095-9389.2021.11.26.004

Experimental study on the dynamic mechanical characteristics of slope rock under low-temperature conditions

doi: 10.13374/j.issn2095-9389.2021.11.26.004
More Information
  • Corresponding author: E-mail: csugaofeng@csu.edu.cn
  • Received Date: 2021-11-26
    Available Online: 2022-02-28
  • Publish Date: 2023-02-01
  • China has large regions that freeze seasonally or multiple times a year. Special geological and climatic conditions must be considered for the engineering construction and mining of mineral resources in these regions, and slope stability in cold regions merits study. Taking the Yulong Copper Mine in the Tibet Autonomous Region as an example, the average altitude of this mining area is approximately 4000 m, the average daily minimum temperature in the coldest month is approximately ?20 ℃, and the freezing period is long. Slope stability is considerably affected by freezing and thawing, and frozen rock creates several challenges to blasting and excavation, thereby restricting mine production efficiency. To study the dynamic mechanical characteristics of slope rock under low-temperature conditions, marble samples are drilled from the slope of the Yulong Copper Mine. With the help of the SHPB experimental system with a low-temperature control system, dynamic compression and tensile mechanics experiments are performed on rock samples under normal temperature and dry conditions, normal temperature and adequate water conditions, and low-temperature freezing conditions to explore the influence of temperature and water content on rock dynamic mechanical properties. The experimental results show that (1) the average uniaxial dynamic compression and tensile strength of frozen rock samples at ?20 ℃ are increased compared with those at room temperature under the joint influence of water/ice phase transformation at low temperature and rock matrix cold shrinkage. Among these phenomena, the latter is the main reason that the strength of frozen rock increases substantially. Under four strain rates, the compressive stress increased by 1.30, 1.62, 1.41, and 1.43 times, and the tensile stress increased by 1.36, 1.28, 1.22, and 1.29 times, respectively. (2) Under the influence of pore water softening, a saturated rock sample has less dynamic strength than a dry rock sample. Therefore, the experimental data under the same strain rate show that the strength of a rock sample follows the order of frozen > dry > saturated. (3) For a given strain rate, the dynamic impact crushing time of saturated marble is the longest, and the decrease with increasing strain rate is the fastest. For a given strain rate, the crushing energy consumption is larger for a rock sample at freezing temperature than at normal temperature and increases greatly with increasing strain rate.

     

  • loading
  • [1]
    侯運炳, 張興, 李攀, 等. 凍融循環對全尾砂固結體力學性能影響及無損檢測研究. 工程科學學報, 2019, 41(11):1433

    Hou Y B, Zhang X, Li P, et al. Mechanical properties and nondestructive testing of cemented mass of unclassified tailings under freeze-thaw cycles. Chin J Eng, 2019, 41(11): 1433
    [2]
    李長洪, 肖永剛, 王宇, 等. 高海拔寒區巖質邊坡變形破壞機制研究現狀及趨勢. 工程科學學報, 2019, 41(11):1374

    Li C H, Xiao Y G, Wang Y, et al. Review and prospects for understanding deformation and failure of rock slopes in cold regions with high altitude. Chin J Eng, 2019, 41(11): 1374
    [3]
    楊陽, 楊仁樹. 高應變率下紅砂巖“凍傷效應”. 工程科學學報, 2019, 41(10):1249

    Yang Y, Yang R S. “Frostbite effect” of red sandstone under high strain rates. Chin J Eng, 2019, 41(10): 1249
    [4]
    顏丙乾, 任奮華, 蔡美峰, 等. THMC多場耦合作用下巖石物理力學性能與本構模型研究綜述. 工程科學學報, 2020, 42(11):1389

    Yan B Q, Ren F H, Cai M F, et al. A review of the research on physical and mechanical properties and constitutive model of rock under THMC multi-field coupling. Chin J Eng, 2020, 42(11): 1389
    [5]
    高峰, 熊信, 周科平, 等. 凍融循環作用下飽水砂巖的強度劣化模型. 巖土力學, 2019, 40(3):926

    Gao F, Xiong X, Zhou K P, et al. Strength deterioration model of saturated sandstone under freeze-thaw cycles. Rock Soil Mech, 2019, 40(3): 926
    [6]
    董方方, 朱譚譚, 屈子健. 基于顆粒流的富水巖石凍融后拉伸力學行為研究. 河北工程大學學報(自然科學版), 2021, 38(3):22

    Dong F F, Zhu T T, Qu Z J. Particle flow-based investigation on the tensile behaviours of rock after freeze-thaw treatment. J Hebei Univ Eng (Nat Sci Ed), 2021, 38(3): 22
    [7]
    聞磊, 李夕兵, 唐海燕, 等. 變溫度區間凍融作用下巖石物理力學性質研究及工程應用. 工程力學, 2017, 34(5):247

    Wen L, Li X B, Tang H Y, et al. Study of physico-mechanical characteristics of rock under different frozen-thawed circle temperature range and its engineering application. Eng Mech, 2017, 34(5): 247
    [8]
    盧雪峰, 蔣建國, 陳建行, 等. 凍融循環作用下巖石的損傷演化規律. 中國水運(下半月), 2021, 21(9):107

    Lu X F, Jiang J G, Chen J X, et al. Damage evolution law of rock under freeze-thaw cycle. China Water Transp, 2021, 21(9): 107
    [9]
    張慧梅, 慕娜娜. 基于三維重構的凍融巖石細觀損傷研究. 力學與實踐, 2021, 43(5):687

    Zhang H M, Mu N N. Study on meso-damage of freeze-thaw rocks based on 3d reconstruction. Mech Eng, 2021, 43(5): 687
    [10]
    Yamabe T, Neaupane K M. Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature condition. Int J Rock Mech Min Sci, 2001, 38(7): 1029 doi: 10.1016/S1365-1609(01)00067-3
    [11]
    Park C, Synn J H, Shin H S, et al. Experimental study on the thermal characteristics of rock at low temperatures. Int J Rock Mech Min Sci, 2004, 41: 81 doi: 10.1016/j.ijrmms.2004.03.023
    [12]
    趙濤, 楊更社, 任俊童, 等. 不同負溫對凍結飽和砂巖力學特性的影響. 西安科技大學學報, 2020, 40(6):996

    Zhao T, Yang G S, Ren J T, et al. Influence of temperatures on the mechanical properties of frozen saturated sandstone. J Xian Univ Sci Technol, 2020, 40(6): 996
    [13]
    劉波, 孫顏頂, 袁藝峰, 等. 不同含水率凍結砂巖強度特性及強度強化機制. 中國礦業大學學報, 2020, 49(6):1085

    Liu B, Sun Y D, Yuan Y F, et al. Strength characteristics of frozen sandstone with different water content and its strengthening mechanism. J China Univ Min Technol, 2020, 49(6): 1085
    [14]
    魏堯, 楊更社, 申艷軍, 等. 白堊系飽和凍結砂巖蠕變試驗及本構模型研究. 巖土力學, 2020, 41(8):2636

    Wei Y, Yang G S, Shen Y J, et al. Creep test and constitutive model of Cretaceous saturated frozen sandstone. Rock Soil Mech, 2020, 41(8): 2636
    [15]
    單仁亮, 白瑤, 孫鵬飛, 等. 凍結層狀紅砂巖三軸蠕變特性及本構模型研究. 中國礦業大學學報, 2019, 48(1):12

    Shan R L, Bai Y, Sun P F, et al. Study of triaxial creep mechanical properties and constitutive model of frozen stratified red sandstone. J China Univ Min Technol, 2019, 48(1): 12
    [16]
    楊更社, 魏堯, 申艷軍, 等. 凍結飽和砂巖三軸壓縮力學特性及強度預測模型研究. 巖石力學與工程學報, 2019, 38(4):683

    Yang G S, Wei Y, Shen Y J, et al. Mechanical behavior and strength forecast model of frozen saturated sandstone under triaxial compression. Chin J Rock Mech Eng, 2019, 38(4): 683
    [17]
    單仁亮, 宋立偉, 白瑤, 等. 爆破作用下凍結巖壁損傷評價的模型試驗研究. 巖石力學與工程學報, 2014, 33(10):1945

    Shan R L, Song L W, Bai Y, et al. Model test studies of damage evaluation of frozen rock wall under blasting loads. Chin J Rock Mech Eng, 2014, 33(10): 1945
    [18]
    楊陽, 李祥龍, 楊仁樹, 等. 低溫巖石沖擊破碎分形特征與斷口形貌分析. 北京理工大學學報, 2020, 40(6):632

    Yang Y, Li X L, Yang R S, et al. Study on fractal characteristics and fracture mechanism of frozen rocks. Trans Beijing Inst Technol, 2020, 40(6): 632
    [19]
    王建國, 雷振, 楊陽, 等. 飽水凍結花崗巖動態力學性狀的應變率效應. 地下空間與工程學報, 2018, 14(5):1292

    Wang J G, Lei Z, Yang Y, et al. Strain rate effect of dynamic mechanical characteristics of saturated freezing granite. Chin J Undergr Space Eng, 2018, 14(5): 1292
    [20]
    Zhou Y X, Xia K, Li X B, et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci, 2012, 49: 105 doi: 10.1016/j.ijrmms.2011.10.004
    [21]
    Zhou Z L, Cai X, Chen L, et al. Influence of cyclic wetting and drying on physical and dynamic compressive properties of sandstone. Eng Geol, 2017, 220: 1 doi: 10.1016/j.enggeo.2017.01.017
    [22]
    平琦, 駱軒, 馬芹永, 等. 沖擊載荷作用下砂巖試件破碎能耗特征. 巖石力學與工程學報, 2015, 34(增刊2): 4197

    Ping Q, Luo X, Ma Q Y, et al. Broken energy dissipation characteristics of sandstone specimens under impact loads. Chin J Rock Mech Eng, 2015, 34(Suppl 2): 4197
    [23]
    溫森, 趙現偉, 常玉林, 等. 基于SHPB的復合巖樣動態壓縮破壞能量耗散分析. 應用基礎與工程科學學報, 2021, 29(2):483

    Wen S, Zhao X W, Chang Y L, et al. Energy dissipation of dynamic failure of mixed rock specimens subject to SHPB compression. J Basic Sci Eng, 2021, 29(2): 483
    [24]
    陳品崟, 趙伏軍, 陳彪, 等. 沖擊載荷下裂隙巖體破碎能量耗散特征. 礦業工程研究, 2021, 36(3):17

    Chen P Y, Zhao F J, Chen B, et al. Energy dissipation characteristics of prefabricated fractured rock under impact load. Miner Eng Res, 2021, 36(3): 17
    [25]
    胡健, 宮鳳強, 賈航宇. SHPB壓縮試驗中紅砂巖的力學與能量耗散特性研究. 黃金科學技術, 2020, 28(3):411 doi: 10.11872/j.issn.1005-2518.2020.03.008

    Hu J, Gong F Q, Jia H Y. Research on mechanical and energy dissipation characteristics of red sandstone in SHPB compression test. Gold Sci Technol, 2020, 28(3): 411 doi: 10.11872/j.issn.1005-2518.2020.03.008
    [26]
    王夢想, 汪海波, 宗琦. 沖擊荷載作用下煤礦泥巖能量耗散試驗研究. 煤炭學報, 2019, 44(6):1716

    Wang M X, Wang H B, Zong Q. Experimental study on energy dissipation of mudstone in coal mine under im-pact loading. J China Coal Soc, 2019, 44(6): 1716
    [27]
    鄧勇, 陳勉, 金衍, 等. 沖擊作用下巖石破碎的動力學特性及能耗特征研究. 石油鉆探技術, 2016, 44(3):27

    Deng Y, Chen M, Jin Y, et al. Investigation of the dynamic characteristics and energy consumption for breaking rocks using the impact load. Petroleum Drill Tech, 2016, 44(3): 27
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (812) PDF downloads(164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频