Citation: | WANG Yan-dong, LI Run-guang, NIE Zhi-hua, LI Shi-lei. A review on the application of neutron and high-energy X-ray diffraction characterization methods in engineering materials[J]. Chinese Journal of Engineering, 2022, 44(4): 676-689. doi: 10.13374/j.issn2095-9389.2021.11.25.008 |
[1] |
Kostorz G. Neutron Scattering: Treatise on Materials Science and Technology, Volume 15. Amsterdam: Academic Press, 1979
|
[2] |
王沿東, 張哲維, 李時磊, 等. 同步輻射高能X射線衍射在材料研究中的應用進展. 中國材料進展, 2017, 36(3):168
Wang Y D, Zhang Z W, Li S L, et al. Application of synchrotron-based high-energy X-ray diffraction in materials research. Mater China, 2017, 36(3): 168
|
[3] |
Staron P, Schreyer A, Clemens H, et al. Neutrons and Synchrotron Radiation in Engineering Materials Science. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2017
|
[4] |
Noyan I C, Cohen J B. Residual Stress: Measurement by Diffraction and Interpretation. Berlin: Springer, 2013
|
[5] |
MacEwen S R, Faber Jr J, Turner A P L. The use of time-of-flight neutron diffraction to study grain interaction stresses. Acta Metall, 1983, 31(5): 657 doi: 10.1016/0001-6160(83)90082-2
|
[6] |
Lebensohn R A, Tomé C N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall Mater, 1993, 41(9): 2611 doi: 10.1016/0956-7151(93)90130-K
|
[7] |
Lebensohn R A, Tomé C N. A self-consistent viscoplastic model: Prediction of rolling textures of anisotropic polycrystals. Mater Sci Eng A, 1994, 175(1-2): 71 doi: 10.1016/0921-5093(94)91047-2
|
[8] |
Clausen B, Lorentzen T, Leffers T. Self-consistent modelling of the plastic deformation off. c. c. polycrystals and its implications for diffraction measurements of internal stresses. Acta Mater, 1998, 46(9): 3087
|
[9] |
Roters F, Eisenlohr P, Bieler T R, et al. Crystal Plasticity Finite Element Methods. New Jersey: John Wiley & Sons, 2010
|
[10] |
Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater, 2010, 58(4): 1152 doi: 10.1016/j.actamat.2009.10.058
|
[11] |
Wang Y D, Peng R L, McGreevy R L. A novel method for constructing the mean field of grain-orientation-dependent residual stress. Philos Mag Lett, 2001, 81(3): 153 doi: 10.1080/09500830010017088
|
[12] |
Lorentzen T, Hutchings M, Withers P, et al. Introduction to the Characterization of Residual Stress by Neutron Diffraction. Boca Raton: CRC press, 2005
|
[13] |
Ice G E, Larson B C. 3D X‐ray crystal microscope. Adv Eng Mater, 2000, 2(10): 643 doi: 10.1002/1527-2648(200010)2:10<643::AID-ADEM643>3.0.CO;2-U
|
[14] |
King A, Reischig P, Adrien J, et al. Polychromatic diffraction contrast tomography. Mater Charact, 2014, 97: 1 doi: 10.1016/j.matchar.2014.07.026
|
[15] |
McDonald S A, Reischig P, Holzner C, et al. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy. Sci Rep, 2015, 5(1): 14665 doi: 10.1038/srep14665
|
[16] |
Nagler S E, Stoica A D, Stoica G M, et al. Time-of-flight neutron diffraction (TOF-ND) analyses of the composition and minting of ancient judaean “Biblical” coins. J Anal Methods Chem, 2019, 2019: 6164058
|
[17] |
Larson B C, Yang W, Ice G E, et al. Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature, 2002, 415(6874): 887 doi: 10.1038/415887a
|
[18] |
Santisteban J R, Edwards L, Fizpatrick M E, et al. Engineering applications of Bragg-edge neutron transmission. Appl Phys A, 2002, 74(1): s1433
|
[19] |
Tomota Y, Luká? P, Neov D, et al. In situ neutron diffraction during tensile deformation of a ferrite-cementite steel. Acta Mater, 2003, 51(3): 805 doi: 10.1016/S1359-6454(02)00472-X
|
[20] |
Jia N, Peng R L, Wang Y D, et al. Interactions between the phase stress and the grain-orientation-dependent stress in duplex stainless steel during deformation. Acta Mater, 2006, 54(15): 3907 doi: 10.1016/j.actamat.2006.04.019
|
[21] |
Jacques P J, Furnémont Q, Lani F, et al. Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing. Acta Mater, 2007, 55(11): 3681
|
[22] |
Li R G, Tan Q, Wang Y K, et al. Grain-orientation-dependent phase transformation kinetics in austenitic stainless steel under low-temperature uniaxial loading. Materialia, 2021, 15: 101030 doi: 10.1016/j.mtla.2021.101030
|
[23] |
Jia N, Peng R L, Wang Y D, et al. Micromechanical behavior and texture evolution of duplex stainless steel studied by neutron diffraction and self-consistent modeling. Acta Mater, 2008, 56(4): 782 doi: 10.1016/j.actamat.2007.10.040
|
[24] |
Allen A J, Hutchings M T, Windsor C G, et al. Neutron diffraction methods for the study of residual stress fields. Adv Phys, 1985, 34(4): 445 doi: 10.1080/00018738500101791
|
[25] |
Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction. Acta Mater, 2004, 52(20): 5737 doi: 10.1016/j.actamat.2004.08.016
|
[26] |
Tomota Y, Lukas P, Harjo S, et al. In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation. Acta Mater, 2003, 51(3): 819 doi: 10.1016/S1359-6454(02)00473-1
|
[27] |
Daymond M R, Priesmeyer H G. Elastoplastic deformation of ferritic steel and cementite studied by neutron diffraction and self-consistent modelling. Acta Mater, 2002, 50(6): 1613 doi: 10.1016/S1359-6454(02)00026-5
|
[28] |
Oliver E C, Withers P J, Daymond M R, et al. Neutron-diffraction study of stress-induced martensitic transformation in TRIP steel. Appl Phys A, 2002, 74(1): s1143
|
[29] |
Agnew S R, Yoo M H, Tomé C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater, 2001, 49(20): 4277 doi: 10.1016/S1359-6454(01)00297-X
|
[30] |
Agnew S R, Tomé C N, Brown D W, et al. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling. Scr Mater, 2003, 48(8): 1003 doi: 10.1016/S1359-6462(02)00591-2
|
[31] |
Proust G, Tomé C N, Jain A, et al. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int J Plast, 2009, 25(5): 861 doi: 10.1016/j.ijplas.2008.05.005
|
[32] |
Beyerlein I J, Tomé C N. A dislocation-based constitutive law for pure Zr including temperature effects. Int J Plast, 2008, 24(5): 867 doi: 10.1016/j.ijplas.2007.07.017
|
[33] |
Wang Y D, Wang X L, Stoica A D, et al. Separating the recrystallization and deformation texture components by high-energy X-rays. J Appl Crystallogr, 2002, 35(6): 684 doi: 10.1107/S0021889802015261
|
[34] |
Wang Y D, Tian H, Stoica A D, et al. The development of grain-orientation-dependent residual stresses in a cyclically deformed alloy. Nat Mater, 2003, 2(2): 101 doi: 10.1038/nmat812
|
[35] |
Wang Y D, Peng R L, McGreevy R. High anisotropy of orientation dependent residual stress in austenite of cold rolled stainless steel. Scr Mater, 1999, 41(9): 995 doi: 10.1016/S1359-6462(99)00248-1
|
[36] |
Jia N, Cong Z H, Sun X, et al. An in situ high-energy X-ray diffraction study of micromechanical behavior of multiple phases in advanced high-strength steels. Acta Mater, 2009, 57(13): 3965 doi: 10.1016/j.actamat.2009.05.002
|
[37] |
Zhang M H, Li R G, Ding J, et al. In situ high-energy X-ray diffraction mapping of Lüders band propagation in medium-Mn transformation-induced plasticity steels. Mater Res Lett, 2018, 6(12): 662 doi: 10.1080/21663831.2018.1530698
|
[38] |
Li R G, Xie Q G, Wang Y D, et al. Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction. PNAS, 2018, 115(3): 483 doi: 10.1073/pnas.1711994115
|
[39] |
Ho W F, Chen W K, Wu S C, et al. Structure, mechanical properties, and grindability of dental Ti-Zr alloys. J Mater Sci Mater M, 2008, 19(10): 3179 doi: 10.1007/s10856-008-3454-x
|
[40] |
Zhu Z W, Xiong C Y, Wang J, et al. In situ synchrotron X-ray diffraction investigations of the physical mechanism of ultra-low strain hardening in Ti–30Zr–10Nb alloy. Acta Mater, 2018, 154: 45 doi: 10.1016/j.actamat.2018.05.034
|
[41] |
Kelekanjeri V S K G, Moss L K, Gerhardt R A, et al. Quantification of the coarsening kinetics of γ' precipitates in Waspaloy microstructures with different prior homogenizing treatments. Acta Mater, 2009, 57(16): 4658 doi: 10.1016/j.actamat.2009.06.019
|
[42] |
Jaladurgam N R, Li H J, Kelleher J, et al. Microstructure-dependent deformation behaviour of a low γ' volume fraction Ni-base superalloy studied by in situ neutron diffraction. Acta Mater, 2020, 183: 182 doi: 10.1016/j.actamat.2019.11.003
|
[43] |
Yan Z R, Tan Q, Huang H, et al. Phase evolution and thermal expansion behavior of a γ' precipitated Ni-based superalloy by synchrotron X-ray diffraction. Acta Metall Sin Engl Lett, 2022, 35(1): 93 doi: 10.1007/s40195-021-01321-2
|
[44] |
Webster P J, Ziebeck K R A, Town S L, et al. Magnetic order and phase transformation in Ni2MnGa. Philos Mag B, 1984, 49(3): 295 doi: 10.1080/13642817408246515
|
[45] |
Brown P J, Crangle J, Kanomata T, et al. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J Phys:Condens Matter, 2002, 14(43): 10159 doi: 10.1088/0953-8984/14/43/313
|
[46] |
Richard M L, Feuchtwanger J, Allen S M, et al. Chemical order in off-stoichiometric Ni–Mn–Ga ferromagnetic shape-memory alloys studied with neutron diffraction. Philos Mag, 2007, 87(23): 3437 doi: 10.1080/14786430701297582
|
[47] |
Lázpita P, Barandiarán J M, Gutiérrez J, et al. Magnetic and structural properties of non-stoichiometric Ni–Mn–Ga ferromagnetic shape memory alloys. Eur Phys J Spec Top, 2008, 158(1): 149 doi: 10.1140/epjst/e2008-00668-0
|
[48] |
Lázpita P, Barandiarán J M, Gutiérrez J, et al. Magnetic moment and chemical order in off-stoichiometric Ni–Mn–Ga ferromagnetic shape memory alloys. New J Phys, 2011, 13(3): 033039 doi: 10.1088/1367-2630/13/3/033039
|
[49] |
Cong D Y, Wang Y D, Zhao X, et al. Crystal structures and textures in the hot-forged Ni?Mn?Ga shape memory alloys. Metall Mater Trans A, 2006, 37(5): 1397 doi: 10.1007/s11661-006-0084-0
|
[50] |
Zheludev A, Shapiro S M, Wochner P, et al. Phonon anomaly, central peak, and microstructures in Ni2MnGa. Phys Rev B, 1995, 51(17): 11310 doi: 10.1103/PhysRevB.51.11310
|
[51] |
Zheludev A, Shapiro S M, Wochner P, et al. Precursor effects and premartensitic transformation in Ni2MnGa. Phys Rev B, 1996, 54(21): 15045 doi: 10.1103/PhysRevB.54.15045
|
[52] |
Wang Y D, Brown D W, Choo H, et al. Experimental evidence of stress-field-induced selection of variants in Ni?Mn?Ga ferromagnetic shape-memory alloys. Phys Rev B, 2007, 75(17): 174404 doi: 10.1103/PhysRevB.75.174404
|
[53] |
Nie Z H, Peng R L, Johansson S, et al. Direct evidence of detwinning in polycrystalline Ni?Mn?Ga ferromagnetic shape memory alloys during deformation. J Appl Phys, 2008, 104(10): 103519 doi: 10.1063/1.3020534
|
[54] |
Nie Z H, Cong D Y, Liu D M, et al. Large internal stress-assisted twin-boundary motion in Ni2MnGa ferromagnetic shape memory alloy. Appl Phys Lett, 2011, 99(14): 141907 doi: 10.1063/1.3645626
|
[55] |
Hao S J, Cui L S, Jiang D Q, et al. Nanostructured Nb reinforced NiTi shape memory alloy composite with high strength and narrow hysteresis. Appl Phys Lett, 2013, 102(23): 231905 doi: 10.1063/1.4809954
|
[56] |
Hao S J, Cui L S, Chen Z H, et al. A novel stretchable coaxial NiTi‐sheath/Cu‐core composite with high strength and high conductivity. Adv Mater, 2013, 25(8): 1199 doi: 10.1002/adma.201203762
|
[57] |
Hao S J, Cui L S, Jiang D Q, et al. Superelastic memory effect in in situ NbTi-nanowire-NiTi nanocomposite. Appl Phys Lett, 2012, 101(17): 173115 doi: 10.1063/1.4764538
|
[58] |
Hao S J, Jiang D Q, Cui L S, et al. Phase-stress partition and stress-induced martensitic transformation in NbTi/NiTi nanocomposite. Appl Phys Lett, 2011, 99(8): 084103 doi: 10.1063/1.3629768
|
[59] |
Wang D P, Chen X, Nie Z H, et al. Transition in superelasticity for Ni55-xCoxFe18Ga27 alloys due to strain glass transition. EPL, 2012, 98(4): 46004 doi: 10.1209/0295-5075/98/46004
|
[60] |
Hao S J, Cui L S, Jiang D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science, 2013, 339(6124): 1191 doi: 10.1126/science.1228602
|
[61] |
Chen H Y, Wang Y D, Nie Z H, et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nat Mater, 2020, 19(7): 712 doi: 10.1038/s41563-020-0645-4
|
[62] |
Cong D Y, Xiong W X, Planes A, et al. Colossal elastocaloric effect in ferroelastic Ni–Mn–Ti alloys. Phys Rev Lett, 2019, 122(25): 255703 doi: 10.1103/PhysRevLett.122.255703
|
[63] |
Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy. Adv Mater, 2020, 32(49): 2004029 doi: 10.1002/adma.202004029
|
[64] |
Gordon J V, Lim R E, Wilkin M J, et al. Evaluating the grain-scale deformation behavior of a single-phase FCC high entropy alloy using synchrotron high energy diffraction microscopy. Acta Mater, 2021, 215: 117120 doi: 10.1016/j.actamat.2021.117120
|
[65] |
Shi Y J, Li S L, Lee T L, et al. In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy. Mater Sci Eng A, 2020, 771: 138555 doi: 10.1016/j.msea.2019.138555
|
[66] |
Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science, 2021, 373(6557): 912 doi: 10.1126/science.abf6986
|
[67] |
Li R G, Wang Y K, Xu N, et al. Unveiling the origins of work-hardening enhancement and mechanical instability in laser shock peened titanium. Acta Mater, 2022, 229: 117810 doi: 10.1016/j.actamat.2022.117810
|
[68] |
Ma Z W, Ren Y, Li R G, et al. Cryogenic temperature toughening and strengthening due to gradient phase structure. Mater Sci Eng A, 2018, 712: 358 doi: 10.1016/j.msea.2017.11.107
|
[69] |
Zhang Z W, Feng Y F, Tan Q, et al. Residual stress distribution in Ni-based superalloy turbine discs during fabrication evaluated by neutron/X-ray diffraction measurement and thermomechanical simulation. Mater Des, 2019, 166: 107603 doi: 10.1016/j.matdes.2019.107603
|
[70] |
Fitzpatrick M E, Hutchings M T, Withers P J. Separation of macroscopic, elastic mismatch and thermal expansion misfit stresses in metal matrix composite quenched plates from neutron diffraction measurements. Acta Mater, 1997, 45(12): 4867 doi: 10.1016/S1359-6454(97)00209-7
|
[71] |
Feng Z, Wang X L, Spooner S, et al. A finite element model for residual stress in repair welds [J/OL]. OSTI. GOV Online (1996-7-21) [2021-11-25].https://doi.org/10.2172/244602
|