<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
HUANG Chang-fu, ZHANG Shuai-long, GAO Yong-tao, WU Shun-chuan, ZHOU Yu, SUN Hao, WANG Wen-qiang, LU Qing-zhao. Influence of particle loss on the seepage characteristics of tuff in the fault fracture zone under triaxial stress[J]. Chinese Journal of Engineering, 2022, 44(7): 1134-1146. doi: 10.13374/j.issn2095-9389.2021.11.22.001
Citation: HUANG Chang-fu, ZHANG Shuai-long, GAO Yong-tao, WU Shun-chuan, ZHOU Yu, SUN Hao, WANG Wen-qiang, LU Qing-zhao. Influence of particle loss on the seepage characteristics of tuff in the fault fracture zone under triaxial stress[J]. Chinese Journal of Engineering, 2022, 44(7): 1134-1146. doi: 10.13374/j.issn2095-9389.2021.11.22.001

Influence of particle loss on the seepage characteristics of tuff in the fault fracture zone under triaxial stress

doi: 10.13374/j.issn2095-9389.2021.11.22.001
More Information
  • Corresponding author: E-mail: zsl18810915311@163.com
  • Received Date: 2021-11-22
    Available Online: 2022-04-14
  • Publish Date: 2022-07-01
  • In the process of underground engineering construction, tuff in the fault fracture zone under a three-dimensional stress state loses particles under the action of fluid–solid coupling, causing the structural instability of the fault fracture rock. Finally, fault water inrush disaster occurs. Based on this, the field fault sampling has been conducted, and the broken rock triaxial seepage test system has been used to investigate the phenomenon of particle loss in samples with various particle sizes under triaxial load, as well as the effect of particle loss on pore structure and the time-varying evolution of seepage velocity. The following are the results: (1) The quality and time of the particle loss of broken tuff satisfy the exponential nonlinear relationship under different levels of triaxial stress, with a correlation coefficient of not less than 94%. Particle loss quality is inversely related to axial pressure and confining pressure, indicating that the higher the axial displacement, the smaller the decrease in particle loss mass with confining pressure. (2) The porosity increases rapidly between 0 and 60 s during the infiltration process. The seepage evolution process of the pore structure is related to the particle size gradation; that is, the overall porosity increases as the value of n (Talbot power exponent) increases. In the case of the same value of n, the porosity, which ranges from 0.33 to 0.52, decreases as the axial displacement and confining pressure increase. (3) Owing to the regular loss of particles in the sample, the time-varying evolution process of the seepage velocity of fractured tuff can be divided into three stages: stable seepage, sudden increase of seepage velocity, and approximate pipe flow. When the confining pressure is 0.8 MPa, each stage’s flow velocity is higher than that of the corresponding stage when the confining pressure is 1.4 MPa. The stable seepage stage has a short duration and low flow rate, and its occurrence times decrease as the n value increases. In the stage of seepage velocity surge, velocity surges to a peak value. The approximate pipe flow stage maintains a relatively stable and high flow velocity despite occasional fluctuations. The research results can offer a theoretical basis for studying the evolution law of fault water inrush disaster.

     

  • loading
  • [1]
    李術才, 許振浩, 黃鑫, 等. 隧道突水突泥致災構造分類、地質判識、孕災模式與典型案例分析. 巖石力學與工程學報, 2018, 37(5):1041

    Li S C, Xu Z H, Huang X, et al. Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels. Chin J Rock Mech Eng, 2018, 37(5): 1041
    [2]
    Li X Z, Zhang P X, He Z C, et al. Identification of geological structure which induced heavy water and mud inrush in tunnel excavation: A case study on Lingjiao tunnel. Tunn Undergr Space Technol, 2017, 69: 203 doi: 10.1016/j.tust.2017.06.014
    [3]
    李順才, 陳占清, 繆協興, 等. 飽和破碎砂巖隨時間變形?滲流特性試驗研究. 采礦與安全工程學報, 2011, 28(4):542 doi: 10.3969/j.issn.1673-3363.2011.04.008

    Li S C, Chen Z Q, Miao X X, et al. Experimental study on the properties of time-dependent deformation-seepage in water-saturated broken sandstone. J Mini Saf Eng, 2011, 28(4): 542 doi: 10.3969/j.issn.1673-3363.2011.04.008
    [4]
    繆協興, 劉衛群, 陳占清. 采動巖體滲流理論. 北京: 科學出版社, 2004

    Miu X X, Liu W Q, Chen Z Q. Seepage Theory of Mining Rock Mass. Beijing: Science Press, 2004
    [5]
    陳占清, 李順才, 茅獻彪, 等. 飽和含水石灰巖散體蠕變過程中孔隙度變化規律的試驗. 煤炭學報, 2006, 31(1):26 doi: 10.3321/j.issn:0253-9993.2006.01.006

    Chen Z Q, Li S C, Mao X B, et al. Experimental on the porosity changing of water-saturated granular limestone during its creep. J China Coal Soc, 2006, 31(1): 26 doi: 10.3321/j.issn:0253-9993.2006.01.006
    [6]
    孫明貴, 黃先伍, 李天珍, 等. 石灰巖應力?應變全過程的非Darcy流滲透特性. 巖石力學與工程學報, 2006, 25(3):484 doi: 10.3321/j.issn:1000-6915.2006.03.008

    Sun M G, Huang X W, Li T Z, et al. Seepage properties of non-Darcy flow in complete failure process of limestone. Chin J Rock Mech Eng, 2006, 25(3): 484 doi: 10.3321/j.issn:1000-6915.2006.03.008
    [7]
    王偉, 徐衛亞, 王如賓, 等. 低滲透巖石三軸壓縮過程中的滲透性研究. 巖石力學與工程學報, 2015, 34(1):40

    Wang W, Xu W Y, Wang R B, et al. Permeability of dense rock under triaxial compression. Chin J Rock Mech Eng, 2015, 34(1): 40
    [8]
    杜鋒, 李振華, 姜廣輝, 等. 西部礦區突水潰沙類型及機理研究. 煤炭學報, 2017, 42(7):1846

    Du F, Li Z H, Jiang G H, et al. Types and mechanism of water-sand inrush disaster in west coal mine. J China Coal Soc, 2017, 42(7): 1846
    [9]
    姚邦華. 破碎巖體變質量流固耦合動力學理論及應用研究[學位論文]. 徐州: 中國礦業大學, 2012

    Yao B H. Research on Variable on Variable Mass Fluid-Solid Coupling Dynamic Theory of Broken Rockmass and Application [Dissertation]. Xuzhou: China University of Mining and Technology, 2012
    [10]
    Liu W Q, Fei X D, Fang J N. Rules for confidence intervals of permeability coefficients for water flow in over-broken rock mass. Int J Min Sci Technol, 2012, 22(1): 29 doi: 10.1016/j.ijmst.2011.06.003
    [11]
    Ma D, Miao X X, Chen Z Q, et al. Experimental investigation of seepage properties of fractured rocks under different confining pressures. Rock Mech Rock Eng, 2013, 46(5): 1135
    [12]
    Ma D, Rezania M, Yu H S, et al. Variations of hydraulic properties of granular sandstones during water inrush: Effect of small particle migration. Eng Geol, 2017, 217: 61 doi: 10.1016/j.enggeo.2016.12.006
    [13]
    Ma D, Duan H Y, Liu J F, et al. The role of gangue on the mitigation of mining-induced hazards and environmental pollution: An experimental investigation. Sci Total Environ, 2019, 664: 436 doi: 10.1016/j.scitotenv.2019.02.059
    [14]
    張天軍, 尚宏波, 李樹剛, 等. 分級加載下破碎砂巖滲透特性試驗及其穩定性分析. 煤炭學報, 2016, 41(5):1129

    Zhang T J, Shang H B, Li S G, et al. Permeability characteristics of broken sandstone and its stability analysis under step loading. J China Coal Soc, 2016, 41(5): 1129
    [15]
    張天軍, 尚宏波, 李樹剛, 等. 三軸應力下不同粒徑破碎砂巖滲透特性試驗. 巖土力學, 2018, 39(7):2361

    Zhang T J, Shang H B, Li S G, et al. Permeability tests of fractured sandstone with different sizes of fragments under three-dimensional stress states. Rock Soil Mech, 2018, 39(7): 2361
    [16]
    張天軍, 張秀鋒, 龐明坤, 等. 顆粒流失對陷落柱充填物孔隙結構及突水行為的影響. 煤炭學報, 2021, 46(10):3245

    Zhang T J, Zhang X F, Pang M K, et al. Effect of particle loss on the pore structure and emergent behavior of karst column fills. J China Coal Soc, 2021, 46(10): 3245
    [17]
    張勃陽, 白海波, 張凱. 類陷落柱介質滲流突變機制試驗研究. 巖土力學, 2016, 37(3):745

    Zhang B Y, Bai H B, Zhang K. Experimental research on seepage mutation mechanism of collapse column medium. Rock Soil Mechs, 2016, 37(3): 745
    [18]
    張勃陽, 林志斌, 吳疆宇, 等. 側限條件下陷落柱破碎巖體的滲流特性研究. 采礦與安全工程學報, 2020, 37(5):1045

    Zhang B Y, Lin Z B, Wu J Y, et al. Seepage characteristics of broken rock inside collapse column under application of lateral limited uniaxial compression. J Min Saf Eng, 2020, 37(5): 1045
    [19]
    Feng M M, Wu J Y, Ma D, et al. Experimental investigation on the seepage property of saturated broken red sandstone of continuous gradation. Bull Eng Geol Environ, 2018, 77(3): 1167 doi: 10.1007/s10064-017-1046-z
    [20]
    楊斌, 徐曾和, 楊天鴻, 等. 高水力梯度條件下顆粒堆積型多孔介質滲流規律試驗研究. 巖土力學, 2018, 39(11):4017

    Yang B, Xu Z H, Yang T H, et al. Experimental study of non-linear water flow through unconsolidated porous media under condition of high hydraulic gradient. Rock Soil Mech, 2018, 39(11): 4017
    [21]
    Yu B Y, Chen Z Q, Yu L L. Water-resisting ability of cemented broken rocks. Int J Min Sci Technol, 2016, 26(3): 449 doi: 10.1016/j.ijmst.2016.02.013
    [22]
    劉偉韜, 杜衍輝, 于師建, 等. 陷落柱骨架砂巖三軸壓縮滲流特性及聲發射特征試驗研究. 巖石力學與工程學報, 2021, 40(8):1580

    Liu W T, Du Y H, Yu S J, et al. Research on permeability and acoustic emission characteristics of karst collapsed column skeleton sandstone under triaxial compression. Chin J Rock Mech Eng, 2021, 40(8): 1580
    [23]
    Wasantha P L P, Ranjith P G. Water-weakening behavior of Hawkesbury sandstone in brittle regime. Eng Geol, 2014, 178: 91 doi: 10.1016/j.enggeo.2014.05.015
    [24]
    Zhao J H, Yin L M, Guo W J. Stress-seepage coupling of cataclastic rock masses based on digital image technologies. Rock Mech Rock Eng, 2018, 51(8): 2355 doi: 10.1007/s00603-018-1474-5
    [25]
    李玉壽, 楊永杰, 楊圣奇, 等. 三軸及孔隙水作用下煤的變形和聲發射特性. 北京科技大學學報, 2011, 33(6):658

    Li Y S, Yang Y J, Yang S Q, et al. Deformation and acoustic emission behaviors of coal under triaxial compression and pore water pressure. J Univ Sci Technol Beijing, 2011, 33(6): 658
    [26]
    顏丙乾, 任奮華, 蔡美峰, 等. THMC多場耦合作用下巖石力學實驗與數值模擬研究進展. 工程科學學報, 2021, 43(1):47

    Yan B Q, Ren F H, Cai M F, et al. Research review of rock mechanics experiment and numerical simulation under THMC multi-field coupling. Chin J Eng, 2021, 43(1): 47
    [27]
    李順才, 繆協興, 陳占清, 等. 承壓破碎巖石非Darcy滲流的滲透特性試驗研究. 工程力學, 2008, 25(4):85

    Li S C, Miao X X, Chen Z Q, et al. Experimental study on seepage properties of non-Darcy flow in confined broken rocks. Eng Mech, 2008, 25(4): 85
    [28]
    馬丹, 段宏宇, 張吉雄, 等. 斷層破碎帶巖體突水災害的蠕變?沖蝕耦合力學特性試驗研究. 巖石力學與工程學報, 2021, 40(9):1751

    Ma D, Duan H Y, Zhang J X, et al. Experimental investigation of creep-erosion coupling mechanical properties of water inrush hazards in fault fracture rock masses. Chin J Rock Mech Eng, 2021, 40(9): 1751
    [29]
    Wu J Y, Han G S, Feng M M, et al. Mass-loss effects on the flow behavior in broken argillaceous red sandstone with different particle-size distributions. Comptes Rendus Mécanique, 2019, 347(6): 504
    [30]
    馮梅梅, 吳疆宇, 陳占清, 等. 連續級配飽和破碎巖石壓實特性試驗研究. 煤炭學報, 2016, 41(9):2195

    Feng M M, Wu J Y, Chen Z Q, et al. Experimental study on the compaction of saturated broken rock of continuous gradation. J China Coal Soc, 2016, 41(9): 2195
    [31]
    謝和平, 高峰, 周宏偉, 等. 巖石斷裂和破碎的分形研究. 防災減災工程學報, 2003, 23(4):1

    Xie H P, Gao F, Zhou H W, et al. Fractal fracture and fragmentation in rocks. J Disas Prev Mitig Eng, 2003, 23(4): 1
    [32]
    于江, 呂旭濱, 秦擁軍. 基于分形理論無腹筋混凝土梁的受剪性能. 工程科學學報, 2021, 43(10):1385

    Yu J, Lü X B, Qin Y J. Experimental study on concrete beams without web reinforcement based on fractal theory. Chin J Eng, 2021, 43(10): 1385
    [33]
    張廣泰, 陳勇, 魯海波, 等. 硫酸鹽侵蝕作用下纖維鋰渣混凝土裂縫的分形特征. 工程科學學報, 2022, 44(2):208

    Zhang G T, Chen Y, Lu H B, et al. Fractal characteristics of fiber lithium slag concrete cracks under sulfate attack. Chin J Eng, 2022, 44(2): 208
    [34]
    朱晟, 王永明, 翁厚洋. 粗粒筑壩材料密實度的縮尺效應研究. 巖石力學與工程學報, 2011, 30(2):348

    Zhu S, Wang Y M, Weng H Y. Study of scale effect of density of coarse-grained dam materials. Chin J Rock Mech Eng, 2011, 30(2): 348
    [35]
    尹升華, 陳勛, 劉超, 等. 礦石顆粒級配對堆浸體系三維孔隙結構的影響. 工程科學學報, 2020, 42(8):972

    Yin S H, Chen X, Liu C, et al. Effects of ore size distribution on the pore structure characteristics of packed ore beds. Chin J Eng, 2020, 42(8): 972
    [36]
    謝定松, 蔡紅, 魏迎奇, 等. 粗粒土滲透試驗縮尺原則與方法探討. 巖土工程學報, 2015, 37(2):369 doi: 10.11779/CJGE201502023

    Xie D S, Cai H, Wei Y Q, et al. Scaling principle and method in seepage tests on coarse materials. Chin J Geotech Eng, 2015, 37(2): 369 doi: 10.11779/CJGE201502023
    [37]
    Wu J Y, Feng M M, Mao X B, et al. Particle size distribution of aggregate effects on mechanical and structural properties of cemented rockfill: Experiments and modeling. Constr Build Mater, 2018, 193: 295 doi: 10.1016/j.conbuildmat.2018.10.208
    [38]
    朱國勝, 張家發, 陳勁松, 等. 寬級配粗粒土滲透試驗尺寸效應及邊壁效應研究. 巖土力學, 2012, 33(9):2569

    Zhu G S, Zhang J F, Chen J S, et al. Study of size and wall effects in seepage test of broadly graded coarse materials. Rock Soil Mech, 2012, 33(9): 2569
    [39]
    劉孟適, 羅強, 蔣良濰, 等. 粗粒土滲透試驗邊壁孔隙特征及處理層最優厚度研究. 巖土力學, 2019, 40(5):1787

    Liu M S, Luo Q, Jiang L W, et al. Boundary pore characteristics and optimal treatment thickness in seepage test of coarse grained soil. Rock Soil Mech, 2019, 40(5): 1787
    [40]
    郁邦永, 陳占清, 吳疆宇, 等. 飽和級配破碎泥巖壓實與粒度分布分形特征試驗研究. 巖土力學, 2016, 37(7):1887

    Yu B Y, Chen Z Q, Wu J Y, et al. Experimental study of compaction and fractal properties of grain size distribution of saturated crushed mudstone with different gradations. Rock Soil Mech, 2016, 37(7): 1887
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article views (369) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频