Citation: | ZHANG Yue-xin, ZHANG Li-feng, WANG Ju-jin, REN Ying, REN Qiang, YANG Wen. Concepts and characteristic curves for the kinetic transformation of nonmetallic inclusions in liquid steel during solidification and cooling and in solid steel during heating process[J]. Chinese Journal of Engineering, 2023, 45(3): 369-379. doi: 10.13374/j.issn2095-9389.2021.11.01.005 |
[1] |
Zhang L F. State of the art in the control of inclusions in tire cord steels—a review. Steel Res Int, 2006, 77(3): 158 doi: 10.1002/srin.200606370
|
[2] |
Hu Y, Chen W Q, Han H B, et al. Influence of calcium treatment on cleanness and fatigue life of 60Si2MnA spring steel. Ironmak Steelmak, 2017, 44(1): 28 doi: 10.1080/03019233.2016.1153026
|
[3] |
李玲. 非金屬夾雜物對連鑄坯質量的影響. 山東冶金, 2021, 43(4):21
Li L. Influence of non-metallic inclusion on quality of continuous casting slabs. Shandong Metall, 2021, 43(4): 21
|
[4] |
張立峰. 關于鋼潔凈度指數的討論. 煉鋼, 2019, 35(3):1
Zhang L F. Discussion on the index of steel cleanliness. Steelmaking, 2019, 35(3): 1
|
[5] |
Williams C A, Unifantowicz P, Baluc N, et al. The formation and evolution of oxide particles in oxide-dispersion-strengthened ferritic steels during processing. Acta Mater, 2013, 61(6): 2219 doi: 10.1016/j.actamat.2012.12.042
|
[6] |
Shi W, Yang S, Li J. Correlation between evolution of inclusions and pitting corrosion in 304 stainless steel with yttrium addition. Sci Reports, 2018, 8: 4830
|
[7] |
Harada A, Maruoka N, Shibata H, et al. A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part 1. Basic concept and application. ISIJ Int, 2013, 53(12): 2110
|
[8] |
張立峰. 鋼中非金屬夾雜物. 北京: 冶金工業出版社, 2019
Zhang L F. Non-metallic Inclusions in Steels: Fundamentals. Beijing: Metallurgical Industry Press, 2019
|
[9] |
張立峰. 鋼中非金屬夾雜物: 工業實踐. 北京: 冶金工業出版社, 2019
Zhang L F. Non-metallic Inclusions in Steels: Industrial Practice. Beijing: Metallurgical Industry Press, 2019
|
[10] |
Ren Y, Zhang L F, Li S S. Transient evolution of inclusions during calcium modification in linepipe steels. ISIJ Int, 2014, 54(12): 2772 doi: 10.2355/isijinternational.54.2772
|
[11] |
任英. 304不銹鋼中夾雜物的控制[學位論文]. 北京: 北京科技大學, 2017
Ren Y. Control of Inclusions in 304 Stainless Steels [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
|
[12] |
Zhang L F, Liu Y, Zhang Y, et al. Transient evolution of nonmetallic inclusions during calcium treatment of molten steel. Metall Mater Trans B, 2018, 49(4): 1841 doi: 10.1007/s11663-018-1289-5
|
[13] |
吳德潤, 唐洪樂, 李玉華, 等. 鋼包頂渣改性對無取向電工鋼夾雜物和磁性能的影響. 電工材料, 2016(1):3
Wu D R, Tang H L, Li Y H, et al. Effects of ladle top slag modification treatment on inclusion and electromagnetic properties of non-oriented electrical steels. Electr Eng Mater, 2016(1): 3
|
[14] |
張懷軍, 韓春鵬, 劉南. 重軌鋼精煉渣與夾雜物相關性研究. 包鋼科技, 2020, 46(5):1 doi: 10.3969/j.issn.1009-5438.2020.05.002
Zhang H J, Han C P, Liu N. Study on pertinence of refining slag and inclusions of rail steel. Sci Technol Baotou Steel, 2020, 46(5): 1 doi: 10.3969/j.issn.1009-5438.2020.05.002
|
[15] |
Itoh H, Hino M, Ban-Ya S. Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel. Metall Mater Trans B, 1997, 28(5): 953 doi: 10.1007/s11663-997-0023-5
|
[16] |
Paek M K, Do K H, Kang Y B, et al. Aluminum deoxidation equilibria in liquid iron: Part III—experiments and thermodynamic modeling of the Fe–Mn–Al–O system. Metall Mater Trans B, 2016, 47(5): 2837 doi: 10.1007/s11663-016-0728-4
|
[17] |
顧超, 趙立華, 甘鵬. 超低碳鋼精煉過程中Fe–Al–Ti–O類復合氧化物夾雜的演變與控制. 工程科學學報, 2019, 41(6):757
Gu C, Zhao L H, Gan P. Revolution and control of Fe–Al–Ti–O complex oxide inclusions in ultralow-carbon steel during refining process. Chin J Eng, 2019, 41(6): 757
|
[18] |
張立峰, 李菲, 方文. 鋼液鈣處理過程中鈣加入量精準計算的熱力學研究. 煉鋼, 2016, 32(2):1
Zhang L F, Li F, Fang W. Thermodynamic investigation for the accurate calcium addition during calcium treatment of molten steels. Steelmaking, 2016, 32(2): 1
|
[19] |
Mizuno K, Todoroki H, Noda M, et al. Effects of Al and Ca in ferrosilicon alloys for deoxidation on inclusion composition in type 304 stainless steel. Iron Steelmak, 2001, 28: 93
|
[20] |
Ren Y, Zhang L F. Thermodynamic model for prediction of slag–steel–inclusion reactions of 304 stainless steels. ISIJ Int, 2017, 57(1): 68 doi: 10.2355/isijinternational.ISIJINT-2016-509
|
[21] |
任昶宇, 張立峰, 任英. 高溫共聚焦顯微鏡原位觀察非金屬夾雜物溶解行為研究進展. 鋼鐵研究學報, 2021, 33(8):670
Ren C Y, Zhang L F, Ren Y. A review on dissolution behavior of non-metallic inclusions in situ observed using high temperature confocal scanning laser microscope. J Iron Steel Res, 2021, 33(8): 670
|
[22] |
Zhang L, Taniguchi S. Fundamentals of inclusion removal from liquid steel by bubble flotation. Int Mater Rev, 2000, 45(2): 59 doi: 10.1179/095066000101528313
|
[23] |
張國鋒, 季莎, 張立峰, 等. 20CrMnTiH齒輪鋼凝固和冷卻過程中非金屬夾雜物的轉變研究. 煉鋼, 2020, 36(3):32
Zhang G F, Ji S, Zhang L F, et al. Study on transformation of non-metallic inclusions in 20CrMnTiH gear steel during solidification and cooling. Steelmaking, 2020, 36(3): 32
|
[24] |
Wang Y, Yang W, Zhang L F. Effect of cooling rate on oxide inclusions during solidification of 304 stainless steel. Steel Res Int, 2019, 90(7): 1900027 doi: 10.1002/srin.201900027
|
[25] |
張明海, 程禮梅, 楊文, 等. 含硫齒輪鋼凝固冷卻過程中非金屬夾雜物的轉變研究. 煉鋼, 2020, 36(1):21
Zhang M H, Cheng L M, Yang W, et al. Study on transformation of non-metallic inclusions in sulfur-bearing gear steel during solidification and cooling process. Steelmaking, 2020, 36(1): 21
|
[26] |
王祎, 張立峰, 楊文, 等. Q345鋼液凝固及鑄坯冷卻過程中非金屬夾雜物的組成演變. 煉鋼, 2020, 36(2):29
Wang Y, Zhang L F, Yang W, et al. Evolution of non-metallic inclusion composition during cooling and solidification process of Q345 steel. Steelmaking, 2020, 36(2): 29
|
[27] |
Ren Q, Zhang Y X, Ren Y, et al. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab. J Mater Sci Technol, 2021, 61: 147 doi: 10.1016/j.jmst.2020.05.035
|
[28] |
Ren Y, Zhang L F, Pistorius P C. Transformation of oxide inclusions in type 304 stainless steels during heat treatment. Metall Mater Trans B, 2017, 48(5): 2281 doi: 10.1007/s11663-017-1007-8
|
[29] |
Cheng G, Li W F, Zhang X G, et al. Transformation of inclusions in solid GCr15 bearing steels during heat treatment. Metals, 2019, 9(6): 642 doi: 10.3390/met9060642
|
[30] |
Li M G, Matsuura H, Tsukihashi F. Evolution of Al–Ti oxide inclusion during isothermal heating of Fe–Al–Ti alloy at 1573K (1300℃). Metall Mater Trans B, 2017, 48(3): 1915 doi: 10.1007/s11663-017-0968-y
|
[31] |
Zhang X L, Yang S F, Li J S, et al. Transformation of oxide inclusions in stainless steel containing yttrium during isothermal heating at 1473 K. Metals, 2019, 9(9): 961 doi: 10.3390/met9090961
|
[32] |
Zhang X L, Yang S F, Liu C S, et al. Effect of heat-treatment temperature on the interfacial reaction between oxide inclusions and Si–Mn killed steel. JOM, 2018, 70(6): 958 doi: 10.1007/s11837-018-2738-y
|
[33] |
Wang Q Y, Zou X D, Matsuura H, et al. Evolution of inclusions during the 1473 K (1200℃) heating process of EH36 shipbuilding steel. Metall Mater Trans B, 2018, 49(1): 18 doi: 10.1007/s11663-017-1133-3
|
[34] |
Chu Y P, Li W F, Ren Y, et al. Transformation of inclusions in linepipe steels during heat treatment. Metall Mater Trans B, 2019, 50(4): 2047 doi: 10.1007/s11663-019-01593-1
|
[35] |
Zhang Y X, Zhang L F, Chu Y P, et al. Transformation of inclusions in a complicated-deoxidized heavy rail steels during heating. Steel Res Int, 2020, 91(9): 2000120 doi: 10.1002/srin.202000120
|
[36] |
Liu C, Luo Y, Zhang L F, et al. Evolution of sulfides in nonoriented silicon steels during heating process. Steel Res Int, 2021, 92(4): 2000489 doi: 10.1002/srin.202000489
|
[37] |
張月鑫, 張立峰, 王舉金, 等. 連鑄坯全斷面非金屬夾雜物成分分布的預報. 鋼鐵, 2021, 56(10):74
Zhang Y X, Zhang L F, Wang J J, et al. Prediction of composition distribution of non-metallic inclusions in a billet. Iron Steel, 2021, 56(10): 74
|
[38] |
Ren Q, Zhang Y X, Zhang L F, et al. Prediction on the spatial distribution of the composition of inclusions in a heavy rail steel continuous casting bloom. J Mater Res Technol, 2020, 9(3): 5648 doi: 10.1016/j.jmrt.2020.03.090
|
[39] |
Wang J J, Zhang L F, Zhang Y X, et al. Prediction of spatial composition distribution of inclusions in the continuous casting bloom of a bearing steel under unsteady casting. ISIJ Int, 2021, 61(3): 824 doi: 10.2355/isijinternational.ISIJINT-2020-472
|
[40] |
Chen W, Ren Y, Zhang L F. Large eddy simulation on the fluid flow, solidification and entrapment of inclusions in the steel along the full continuous casting slab strand. JOM, 2018, 70(12): 2968 doi: 10.1007/s11837-018-3118-3
|
[41] |
Ueshima Y, Mizoguchi S, Matsumiya T, et al. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification. Metall Trans B, 1986, 17(4): 845 doi: 10.1007/BF02657148
|
[42] |
Zhang L F, Yang X G, Li S S, et al. Control of transverse corner cracks on low-carbon steel slabs. JOM, 2014, 66(9): 1711 doi: 10.1007/s11837-014-1112-y
|
[43] |
Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels. Metall Mater Trans A, 2001, 32(7): 1755 doi: 10.1007/s11661-001-0152-4
|
[44] |
儲焰平, 諶智勇, 劉南, 等. U75V重軌鋼生產過程中非金屬夾雜物的行為演變. 中國冶金, 2018, 28(增刊1): 83
Chu Y P, Chen Z Y, Liu N, et al. Behavior evolution of non-metallic inclusions during production of U75V heavy rail steel. China Metall, 2018, 28(Supple 1): 83
|
[45] |
Wang J J, Zhang L F, Cheng G, et al. Kinetic prediction for isothermal transformation of inclusions in a bearing steel. Metall Mater Trans B, 2022, 53(1): 394 doi: 10.1007/s11663-021-02375-4
|