<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
ZUO Jin-jing, YANG Ren-shu, WANG Wen-liang, GONG Min, ZHAO Yong. Explosive full-field strain and crack dynamic fracture characteristics of a linear shaped charge[J]. Chinese Journal of Engineering, 2022, 44(8): 1306-1314. doi: 10.13374/j.issn2095-9389.2021.10.19.003
Citation: ZUO Jin-jing, YANG Ren-shu, WANG Wen-liang, GONG Min, ZHAO Yong. Explosive full-field strain and crack dynamic fracture characteristics of a linear shaped charge[J]. Chinese Journal of Engineering, 2022, 44(8): 1306-1314. doi: 10.13374/j.issn2095-9389.2021.10.19.003

Explosive full-field strain and crack dynamic fracture characteristics of a linear shaped charge

doi: 10.13374/j.issn2095-9389.2021.10.19.003
More Information
  • Corresponding author: E-mail: cumtbyrsz@163.com
  • Received Date: 2021-10-19
    Available Online: 2022-03-22
  • Publish Date: 2022-07-06
  • This study explores the full-field strain and dynamic fracture characteristics of a linear shaped charge under different initiation positions. The explosion dynamic caustic line experiment system is employed to examine the characteristics of the blast crack propagation of the linear shaped charge at different initiation positions and capture the dynamic information of the crack tip propagation speed and stress intensity factor. Furthermore, the digital image correlation method was used to show the strain evolution law of the linear shaped charge at different initiation positions, as well as the medium strain response of the charge near the explosion zone caused due to detonation transmission. The results show that in end-initiation, the wing crack length at the initiation point is the smallest, and the wing crack propagation length increases with the detonation propagation of the explosive. Conversely, in center-initiation, the propagation length of the wing cracks at the center is less than those at both ends. The propagation length of the wing cracks in the noninitiation end is the longest for end-initiation, where the velocities of the wing crack initiation and propagation are minimum. For center-initiation, the wing crack initiation and propagation velocities are the smallest, i.e., irrespective of the initiation position, the wing crack initiation and propagation velocities at the initiation point are lower than that at other locations. Based on the dynamic stress intensity factor analysis, irrespective of the initiation position, the center wing cracks are type Ⅰ cracks with the largest crack toughness, the stress intensity factor value is the maximum, and the wing cracks at the ends are type Ⅰ?Ⅱ composite cracks dominated by type Ⅱ. Based on the full-field strain analysis of the linear shaped charge, at end-initiation, the range of tension and strain action is mainly along the direction of explosive transmission, and the tension and strain action area at the noninitiation end is larger than that at the initiation end. The corresponding position of the maximum compressive strain is 0.67–0.83 times the charge length from the initiation point. When the center detonates, the action process of tension and compression strain propagates symmetrically from the center to both ends of the initiation, and the strain at the center is the largest. The compressive stress concentration at the end occurs under both initiation modes because the explosive transmission is the process of energy accumulation; thus, the effect of the explosive explosion on the medium grows increasingly stronger along the direction of explosive transmission.

     

  • loading
  • [1]
    Liu L Q, Katsabanis P D. A numerical study of the effects of accurate timing on rock fragmentation. Int J Rock Mech Min Sci, 1997, 34(5): 817 doi: 10.1016/S1365-1609(96)00067-8
    [2]
    Starfield A M, Pugliese J M. Compression waves generated in rock by cylindrical explosive charges: A comparison between a computer model and field measurements. Int J Rock Mech Min Sci Geomech Abstr, 1968, 5(1): 65 doi: 10.1016/0148-9062(68)90023-5
    [3]
    Blair D P. Blast vibration dependence on charge length, velocity of detonation and layered media. Int J Rock Mech Min Sci, 2014, 65: 29 doi: 10.1016/j.ijrmms.2013.11.007
    [4]
    龔敏, 黎劍華. 延長藥包不同位置起爆時的應力場. 北京科技大學學報, 2002, 24(3):248 doi: 10.3321/j.issn:1001-053X.2002.03.005

    Gong M, Li J H. A research on stress field of column and strip-shaped charge in different detonated points. J Univ Sci Technol Beijing, 2002, 24(3): 248 doi: 10.3321/j.issn:1001-053X.2002.03.005
    [5]
    龔敏, 王德勝, 黎劍華. 全息干涉法在條形藥包離面位移場研究中的應用. 爆炸與沖擊, 2005, 25(3):227 doi: 10.3321/j.issn:1001-1455.2005.03.006

    Gong M, Wang D S, Li J H. Application of holographic interferometry to study vertical displacement field in linear charge. Explos Shock Waves, 2005, 25(3): 227 doi: 10.3321/j.issn:1001-1455.2005.03.006
    [6]
    向文飛, 舒大強, 朱傳兵. 基于Starfield迭加法的條形藥包爆炸應力場分析. 爆炸與沖擊, 2004, 24(5):437 doi: 10.3321/j.issn:1001-1455.2004.05.010

    Xiang W F, Shu D Q, Zhu C B. Analysis of blast stress field of linear explosive charge based on starfield superprosition method. Explos Shock Waves, 2004, 24(5): 437 doi: 10.3321/j.issn:1001-1455.2004.05.010
    [7]
    向文飛, 舒大強, 朱傳云. 起爆方式對條形藥包爆炸應力場的影響分析. 巖石力學與工程學報, 2005, 24(9):1624 doi: 10.3321/j.issn:1000-6915.2005.09.026

    Xiang W F, Shu D Q, Zhu C Y. Impacts of detonating mode on blast stress field of linear explosive charge. Chin J Rock Mech Eng, 2005, 24(9): 1624 doi: 10.3321/j.issn:1000-6915.2005.09.026
    [8]
    盧文波, 朱傳云, 賴世驤, 等. 條形藥包的空腔發展過程模擬. 爆炸與沖擊, 1996, 16(2):171 doi: 10.3321/j.issn:1001-1455.1996.02.001

    Lu W B, Zhu C Y, Lai S X, et al. Simulation of cavity expansion with strip-shaped explosive charge. Explos Shock Waves, 1996, 16(2): 171 doi: 10.3321/j.issn:1001-1455.1996.02.001
    [9]
    楊年華. 條形藥包端部效應的研究. 爆炸與沖擊, 1997, 17(3):214

    Yang N H. The blasting effect at the end of a linear charge. Explos Shock Waves, 1997, 17(3): 214
    [10]
    陳士海, 胡帥偉, 初少鳳. 微差時間及柱狀裝藥特征對爆破振動效應影響研究. 巖石力學與工程學報, 2017, 36(增刊2): 3974

    Chen S H, Hu S W, Chu S F. Study on the blasting vibration effect influenced by millisecond time and cylindrical charging characteristics. Chin J Rock Mech Eng, 2017, 36(Suppl 2): 3974
    [11]
    江向陽, 顏事龍, 劉偉, 等. 柱狀藥包爆炸波傳播規律的試驗分析. 重慶大學學報, 2015, 38(4):121 doi: 10.11835/j.issn.1000-582X.2015.04.017

    Jiang X Y, Yan S L, Liu W, et al. Experimental analysis of the law of explosive wave of cylindrical charge. J Chongqing Univ, 2015, 38(4): 121 doi: 10.11835/j.issn.1000-582X.2015.04.017
    [12]
    傅洪賢. 條形藥包在隧道爆破中產生的應力場的實測分析. 巖土力學, 2009, 30(2):483 doi: 10.3969/j.issn.1000-7598.2009.02.034

    Fu H X. Analysis of in situ measurement results of tunnel's stress field induced by linear charge explosion. Rock Soil Mech, 2009, 30(2): 483 doi: 10.3969/j.issn.1000-7598.2009.02.034
    [13]
    魏連雨, 李海超, 劉艷竹. 條形藥包爆炸擠密黃土路堤橫向影響規律. 爆炸與沖擊, 2018, 38(1):233 doi: 10.11883/bzycj-2016-0298

    Wei L Y, Li H C, Liu Y Z. Lateral influence rules on explosion-compacted loess embankment by linear explosive bars. Explos Shock Waves, 2018, 38(1): 233 doi: 10.11883/bzycj-2016-0298
    [14]
    璩世杰, 劉際飛. 節理角度對預裂爆破成縫效果的影響研究. 巖土力學, 2015, 36(1):189

    Qu S J, Liu J F. Numerical analysis of joint angle effect on cracking with presplit blasting. Rock Soil Mech, 2015, 36(1): 189
    [15]
    張鳳鵬, 彭建宇, 范光華, 等. 不同靜應力和節理條件下巖體爆破破巖機制研究. 巖土力學, 2016, 37(7):1839

    Zhang F P, Peng J Y, Fan G H, et al. Mechanisms of blasting-induced rock fractures under different static stress and joint properties conditions. Rock Soil Mech, 2016, 37(7): 1839
    [16]
    楊仁樹, 左進京, 岳中文, 等. 爆炸載荷作用下相向裂紋擴展行為的實驗研究. 煤炭學報, 2017, 42(5):1093

    Yang R S, Zuo J J, Yue Z W, et al. Experimental study on opposite cracks propagation behavior under blast loading. J China Coal Soc, 2017, 42(5): 1093
    [17]
    Kalthoff J F. The Shadow Optical Method of Caustics. Vienna: Springer, 1986
    [18]
    Chu T C, Ranson W F, Sutton M A. Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech, 1985, 25(3): 232 doi: 10.1007/BF02325092
    [19]
    Sabaté N, Vogel D, Gollhardt A, et al. Digital image correlation of nanoscale deformation fields for local stress measurement in thin films. Nanotechnology, 2006, 17(20): 5264 doi: 10.1088/0957-4484/17/20/037
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(13)

    Article views (409) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频