<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
KOU Ming-yin, WANG Ming-yong, JIAO Shu-qiang. Inert anode in a high-temperature molten salt system and oxygen generation by moon regolith electrolysis[J]. Chinese Journal of Engineering, 2021, 43(12): 1618-1629. doi: 10.13374/j.issn2095-9389.2021.10.08.001
Citation: KOU Ming-yin, WANG Ming-yong, JIAO Shu-qiang. Inert anode in a high-temperature molten salt system and oxygen generation by moon regolith electrolysis[J]. Chinese Journal of Engineering, 2021, 43(12): 1618-1629. doi: 10.13374/j.issn2095-9389.2021.10.08.001

Inert anode in a high-temperature molten salt system and oxygen generation by moon regolith electrolysis

doi: 10.13374/j.issn2095-9389.2021.10.08.001
More Information
  • Corresponding author: E-mail: sjiao@ustb.edu.cn
  • Received Date: 2021-10-08
    Available Online: 2021-11-15
  • Publish Date: 2021-12-24
  • In 2020, China proposed to reach the peak of CO2 emissions before 2030 and achieve carbon neutrality by 2060, which is the so-called “carbon peak and carbon neutrality” strategy. Due to strategic requirements, the metallurgical industry has the responsibility of reducing its CO2 emission as it is one of the major CO2 emitters. Therefore, it is imperative to develop low-carbon metallurgical technology. High-temperature molten salt electrochemical metallurgy uses electrons as the energy carrier and reaction driving force, having the advantages of cleanliness and high efficiency. It is the main extraction technology for aluminum, rare earth elements, alkali metal, and alkaline earth metals. Currently, carbon anodes are commonly used in molten salt electrochemical metallurgy, and CO2 product is an important carbon emission source. If an inert oxygen evolution anode is used in a high-temperature molten salt system, then low-carbon emissions can be achieved in the molten salt electrolysis process. Therefore, the development of inert anodes suitable for molten salt electrolysis systems is very important, which has recently become a worldwide research hotspot. This article first reviewed the research progress of inert anodes in various high-temperature molten salt systems, including aluminum electrolytic fluoride salts, CaCl2 molten salts, carbonates, and molten oxides. Meanwhile, the recent development and the utilization of the moon have received widespread attention. In the future construction of lunar bases, oxygen will be the basic prerequisite for human survival. Solar-driven in-situ oxygen production with molten salt electrochemistry from the moon regolith will be an important method in the future to support the oxygen demand for human survival on the moon. Hence, inert oxygen evolution anodes are essential. Therefore, this article also briefly summarized oxygen production technology by moon regolith electrolysis based on inert anodes.

     

  • loading
  • [1]
    謝剛. 熔融鹽理論與應用. 北京: 冶金工業出版社, 1998

    Xie G. Theory and Application of Molten Salt. Beijing: Metallurgical Industry Press, 1998
    [2]
    劉業翔, 李劼. 現代鋁電解. 北京: 冶金工業出版社, 2008

    Liu Y X, Li J. Modern Aluminum Electrolysis. Beijing: Metallurgical Industry Press, 2008
    [3]
    Zhang H L, Yang S, Zhang H H, et al. Numerical simulation of alumina-mixing process with a multicomponent flow model coupled with electromagnetic forces in aluminum reduction cells. JOM, 2014, 66(7): 1210 doi: 10.1007/s11837-014-1020-1
    [4]
    周科朝, 李志友, 張雷. 鋁電解金屬陶瓷惰性陽極材料. 長沙: 中南大學出版社, 2012

    Zhou K C, Li Z Y, Zhang L. Cermet Inert Anode for Aluminum Electrolysis. Changsha: Central South University Press, 2012
    [5]
    張廷安, 朱旺喜, 呂國志. 鋁冶金技術. 北京: 科學出版社, 2014

    Zhang T A, Zhu W X, Lü G Z. Aluminum Metallurgy Technology. Beijing: Science Press, 2014
    [6]
    Ramsey D E, Grindstaff L I. Electrode Composition: US Patent, 4233148. 1980-11-11
    [7]
    Popescu A M, Constantin V. Current efficiency, corrosion and structural changes in SnO2–Sb2O3–CuO inert anodes for aluminium electrolysis. Chin J Chem Phys, 2014, 27(3): 368 doi: 10.1063/1674-0068/27/03/368-372
    [8]
    高權. 低氧分壓下Cu–Ni–NiFe2O4惰性陽極的制備與電解研究[學位論文]. 沈陽: 東北大學, 2015

    Gao Q. Study on the Preparation and Electrolysis of Cu–Ni–NiFe2O4 Inert Anode under Low Oxygen Partial Pressure [Dissertation]. Shenyang: Northeastern University, 2015
    [9]
    Augustin C O, Srinivasan L K, Srinivasan K S. Inert anodes for environmentally clean production of aluminium—Part I. Bulletin Electrochem, 1993, 9(8-10): 502
    [10]
    Ray S P. Inert Electrode United Compositions: US Patent, 4374050. 1983-2-15
    [11]
    席錦會, 姚廣春, 劉宜漢. 預燒溫度對摻雜TiO2、MnO2的鎳鐵尖晶石惰性陽極微觀形貌和性能的影響. 材料導報, 2005, 19(10):133 doi: 10.3321/j.issn:1005-023X.2005.10.036

    Xi J H, Yao G C, Liu Y H. The effects of presintering temperature on microstructure and properties of inert anodes of NiFe2O4 spinel with additives TiO2, MnO2. Mater Rev, 2005, 19(10): 133 doi: 10.3321/j.issn:1005-023X.2005.10.036
    [12]
    Xi J H, Xie Y J, Yao G C, et al. Effect of additive on corrosion resistance of NiFe2O4 ceramics as inert anodes. Trans Nonferrous Met Soc China, 2008, 18(2): 356 doi: 10.1016/S1003-6326(08)60062-X
    [13]
    王昊, 周科朝, 李志友. Nb2O5摻雜NiFe2O4陶瓷材料的顯微結構和導電性能. 中國有色金屬學報, 2013, 23(2):410

    Wang H, Zhou K C, Li Z Y. Microstructure and electrical properties of Nb2O5-doping NiFe2O4 ceramic. Chin J Nonferrous Met, 2013, 23(2): 410
    [14]
    Gregg J S, Frederick M S, King H L, et al. Testing of cerium oxide coated cermet anodes in a laboratory cell // Essent Read Light Met, 2016: 1094
    [15]
    Gregg J S, Frederick M S, Vaccaro A J, et al. Pilot cell demonstration of cerium oxide coated anodes // Light Metals, 1993: 465
    [16]
    吳賢熙, 毛小浩. 鋁電解鎳基惰性陽極的研究. 貴州工業大學學報(自然科學版), 1999, 28(5):36

    Wu X X, Mao X H. Research on inert anode of aluminium electrolysis. J Guizhou Univ Technol (Nat Sci Ed), 1999, 28(5): 36
    [17]
    Dewing E W, Rolseth S, St?en L, et al. The solubility of ZnO and ZnAl2O4 in cryolite melts. Metall Mater Trans B, 1997, 28(6): 1099 doi: 10.1007/s11663-997-0065-8
    [18]
    Hyrn J N. A dynamic metal anode [J/OL]. OSTI Online (1998-11-09) [2021-11-29].https://www.osti.gov/biblio/11093
    [19]
    Shi Z N, Xu J L, Qiu Z X, et al. Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis. JOM, 2003, 55(11): 63 doi: 10.1007/s11837-003-0213-9
    [20]
    于先進. 鋁冶金進展. 沈陽: 東北大學出版社, 2001

    Yu X J. Progress in Aluminum Metallurgy. Shenyang: Northeastern University Press, 2001
    [21]
    曹中秋, 牛焱, 吳維?, 等. 晶粒尺寸對Cu–60Ni合金的高溫氧化行為影響. 腐蝕科學與防護技術, 2000, 13(2):363

    Cao Z Q, Niu Y, Wu W T, et al. Effect of grain size on high temperature oxidation behavior of Cu–60Ni alloys. Corrsion Sci Technol Prot, 2000, 13(2): 363
    [22]
    趙澤良, 牛焱. Cu–15Ni–15Ag合金在600~700 ℃空氣中的氧化. 腐蝕科學與防護技術, 2001, 13(4):187 doi: 10.3969/j.issn.1002-6495.2001.04.001

    Zhao Z L, Niu Y. The air oxidation of Cu–15Ni–15Ag alloy at 600–700 ℃. Corrsion Sci Technol Prot, 2001, 13(4): 187 doi: 10.3969/j.issn.1002-6495.2001.04.001
    [23]
    曹中秋, 牛焱, 吳維?. Cu–Cr–Ni合金800 °C, 0.1 MPa純氧氣中的氧化. 金屬學報, 2000, 36(6):647

    Cao Z Q, Niu Y, Wu W T. Oxidation of Cu–Cr–Ni alloys under 0.1 MPa pure O2 at 800 °C. Acta Met Sin, 2000, 36(6): 647
    [24]
    曾潮流, 王文, 吳維?. Fe–Cr合金在650 ℃熔鹽(Li–K)2CO3中的腐蝕行為. 金屬學報, 2000, 36(6):651 doi: 10.3321/j.issn:0412-1961.2000.06.020

    Zeng C L, Wang W, Wu W T. A study of the corrosion of Fe–Cr alloys in molten (Li–K)2CO3 at 650 ℃. Acta Met Sin, 2000, 36(6): 651 doi: 10.3321/j.issn:0412-1961.2000.06.020
    [25]
    Sekhar J A, Liu J J, Duruz J J. Stable Anodes for Aluminium Production Cells: US Patent, 5510008, 1996-4-23
    [26]
    Duruz J J, Nora V. Grade non–consumable anode materials // Light Metals. Warrendale, 1997: 324
    [27]
    Duruz J J, Nora V, Crottaz O. Cells for the Electrowinning of Aluminium Having Dimensionally Stable Metal-Based Anodes: US Patent, 6913682, 2005-7-5
    [28]
    Haugsrud R. On the influence of non-protective CuO on high-temperature oxidation of Cu-rich Cu–Ni based alloys. Oxid Met, 1999, 52(5-6): 427
    [29]
    Thinh N, Vittorio B, Curtis M, et al. Non–carbon anodes and cathode coatings for aluminium production. JOM, 2004, 56(11): 231
    [30]
    石忠寧, 徐君莉, 邱竹賢, 等. Ni–Fe–Cu惰性陽極的抗氧化和耐蝕性能. 中國有色金屬學報, 2004, 14(4):591 doi: 10.3321/j.issn:1004-0609.2004.04.013

    Shi Z N, Xu J L, Qiu Z X, et al. Anti-oxidation and anti-corrosion properties of Ni–Fe–Cu inert anodes. Chin J Nonferrous Met, 2004, 14(4): 591 doi: 10.3321/j.issn:1004-0609.2004.04.013
    [31]
    Sekhar J A, Trivedi R. Solidification microstructure evolution in the presence of inert particles. Mater Sci Eng:A, 1991, 147(1): 9 doi: 10.1016/0921-5093(91)90800-3
    [32]
    Blinov V, Polyakov P, Thonstad J. Behaviour of cermet inert anodes for aluminium electrolysis in a low temperature electrolyte // Eleventh International Aluminium Symposium. Norway, 2001: 123
    [33]
    Lorentsen O A, Thonstad J. Electrolysis and post– testing of inert cermet anodes // Light Metals. Warrendale, 2002: 457
    [34]
    Liu J Y, Li Z Y, Tao Y Q, et al. Phase evolution of 17(Cu–10Ni)–(NiFe2O4–10NiO) cermet inert anode during aluminum electrolysis. Trans Nonferrous Met Soc China, 2011, 21(3): 566 doi: 10.1016/S1003-6326(11)60752-8
    [35]
    Yu X J, Zhang G L, Qiu Z X, et al. Electrical conductivity and corrosion resistance of ZnFe2O4-based materials used as intert anode for aluminum electrolysis. J Shanghai Univ (Engl Ed), 1999, 3(3): 251 doi: 10.1007/s11741-999-0068-6
    [36]
    于先進, 邱竹賢, 金松哲. ZnFe2O4基材料在NaF–AlF3–Al2O3熔鹽中的腐蝕. 中國腐蝕與防護學報, 2000, 20(5):275 doi: 10.3969/j.issn.1005-4537.2000.05.004

    Yu X J, Qiu Z X, Jin S Z. Corrosion of zinc ferrite in NaF–AlF3–Al2O3 molten salts. J Chin Soc Corros Prot, 2000, 20(5): 275 doi: 10.3969/j.issn.1005-4537.2000.05.004
    [37]
    杜洋. TiB2在熔鹽體系中的陽極過程[學位論文]. 北京: 北京科技大學, 2021

    Du Y. TiB2 Anode Process of TiB2 in Molten Salt System [Dissertation]. Beijing: University of Science and Technology Beijing, 2021
    [38]
    Yin H Y, Gao L L, Zhu H, et al. On the development of metallic inert anode for molten CaCl2–CaO System. Electrochimica Acta, 2011, 56(9): 3296 doi: 10.1016/j.electacta.2011.01.026
    [39]
    Sakamura Y, Kurata M, Inoue T. Electrochemical reduction of UO2 in molten CaCl2 or LiCl. J Electrochem Soc, 2006, 153(3): D31 doi: 10.1149/1.2160430
    [40]
    Barnett R, Kilby K T, Fray D J. Reduction of tantalum pentoxide using graphite and tin-oxide-based anodes via the FFC-Cambridge process. Metall Mater Trans B, 2009, 40(2): 150 doi: 10.1007/s11663-008-9219-6
    [41]
    Kilby K T, Jiao S Q, Fray D J. Current efficiency studies for graphite and SnO2-based anodes for the electro-deoxidation of metal oxides. Electrochimica Acta, 2010, 55(23): 7126 doi: 10.1016/j.electacta.2010.06.049
    [42]
    Jiao S Q, Fray D J. Development of an inert anode for electrowinning in calcium chloride-calcium oxide melts. Metall Mater Trans B, 2010, 41(1): 74 doi: 10.1007/s11663-009-9281-8
    [43]
    Jiao S Q, Zhang L L, Zhu H M, et al. Production of NiTi shape memory alloys via electro-deoxidation utilizing an inert anode. Electrochimica Acta, 2010, 55(23): 7016 doi: 10.1016/j.electacta.2010.06.033
    [44]
    Hu L W, Song Y, Ge J B, et al. Electrochemical metallurgy in CaCl2–CaO melts on the basis of TiO2·RuO2Inert anode. J Electrochem Soc, 2015, 163(3): E33
    [45]
    Ge J B, Zou X L, Almassi S, et al. Electrochemical production of Si without generation of CO2 based on the use of a dimensionally stable anode in molten CaCl2. Angewandte Chemie Int Ed, 2019, 58(45): 16223 doi: 10.1002/anie.201905991
    [46]
    Du Y, Kou M Y, Tu J G, et al. An investigation into the anodic behavior of TiB2 in a CaCl2-based molten salt. Corros Sci, 2021, 178: 109089 doi: 10.1016/j.corsci.2020.109089
    [47]
    湯迪勇. 二氧化碳減排及資源化利用的熔鹽電化學新技術研究[學位論文]. 武漢: 武漢大學, 2014

    Tang D Y. Studies on Technologies for Carbon Dioxide Emissions Reduction and Resource Utilization Based on Molten Salt Electrochemistry [Dissertation]. Wuhan: Wuhan University, 2014
    [48]
    Yin H Y, Tang D Y, Zhu H, et al. Production of iron and oxygen in molten K2CO3–Na2CO3 by electrochemically splitting Fe2O3 using a cost affordable inert anode. Electrochem Commun, 2011, 13(12): 1521 doi: 10.1016/j.elecom.2011.10.009
    [49]
    Tang D Y, Zheng K Y, Yin H Y, et al. Electrochemical growth of a corrosion-resistant multi-layer scale to enable an oxygen-evolution inert anode in molten carbonate. Electrochimica Acta, 2018, 279: 250 doi: 10.1016/j.electacta.2018.05.095
    [50]
    Dou Y P, Tang D Y, Yin H Y, et al. Electrochemical preparation of the Fe–Ni36 Invar alloy from a mixed oxides precursor in molten carbonates. Int J Miner Metall Mater, 2020, 27(12): 1695 doi: 10.1007/s12613-020-2169-y
    [51]
    Tian D H, Wang M Y, Zhou Y P, et al. Ni0.36Al0.10Cu0.30Fe0.24 metallic inert anode for the electrochemical production of Fe–Ni alloy in molten K2CO3–Na2CO3. Metall Mater Trans B, 2018, 49(6): 3424
    [52]
    Tang D Y, Yin H Y, Mao X H, et al. Effects of applied voltage and temperature on the electrochemical production of carbon powders from CO2 in molten salt with an inert anode. Electrochimica Acta, 2013, 114: 567 doi: 10.1016/j.electacta.2013.10.109
    [53]
    Aiken R H. Process of Making Iron from the Ore: US Patent, 0816142, 1906-3-27
    [54]
    Hashimoto Y, Uriya K, Kono R. Electrowinning of titanium from its oxides, Part II. Influences of fluoride salt baths on fused–salt electrodeposition of titanium metal from titanium dioxide. Denki Kagaku, 1971, 39(12): 938
    [55]
    Zhang K, Jiao H D, Zhou Z G, et al. Electrochemical behavior of Fe(III) ion in CaO–MgO–SiO2–Al2O3–NaF–Fe2O3 melts at 1673 K. J Electrochem Soc, 2016, 163(13): D710 doi: 10.1149/2.1021613jes
    [56]
    Zhou Z G, Jiao H D, Tu J G, et al. Direct production of Fe and Fe–Ni alloy via molten oxides electrolysis. J Electrochem Soc, 2017, 164(6): E113 doi: 10.1149/2.0881706jes
    [57]
    Zhou Z G, Wang S, Jiao H D, et al. The feasibility of electrolytic preparation of Fe–Ni–Cr alloy in molten oxides system. J Electrochem Soc, 2017, 164(14): D964 doi: 10.1149/2.0711714jes
    [58]
    肖巍, 朱華, 尹華意, 等. 熔鹽電化學低碳冶金新技術研究. 電化學, 2012, 18(3):193

    Xiao W, Zhu H, Yin H Y, et al. Novel molten-salt electrolysis processes towards low-carbon metallurgy. J Electrochem, 2012, 18(3): 193
    [59]
    Wang D H, Xiao W. Inert anode development for high-temperature molten salts. Molten Salts Chemistry, 2013: 171
    [60]
    Wang D H, Gmitter A J, Sadoway D R. Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide. J Electrochem Soc, 2011, 158(6): E51 doi: 10.1149/1.3560477
    [61]
    Kim H, Paramore J, Allanore A, et al. Electrolysis of molten iron oxide with an iridium anode: The role of electrolyte basicity. J Electrochem Soc, 2011, 158(10): E101 doi: 10.1149/1.3623446
    [62]
    Allanore A, Yin L, Sadoway D R. A new anode material for oxygen evolution in molten oxide electrolysis. Nature, 2013, 497(7449): 353 doi: 10.1038/nature12134
    [63]
    McKay D S, Carter J L, Boles W W, et al. New lunar soil simulant // Proceedings of the 4th International Conference on Engineering, Construction and Operations in Space. New Mexico, 1994: 857
    [64]
    焦樹強, 朱鴻民, 張琳琳. 一種利用月球表面土壤原位制氧氣的新方法: 中國專利, 101956203A. 2011-01-26

    Jiao S Q, Zhu H M, Zhang L L. A New Method for In-Situ Oxygen Production Using the Soil on the Surface of the Moon: China Patent, 101956203A. 2011-01-26
    [65]
    歐陽自遠. 月球科學概論. 北京: 中國宇航出版社, 2005

    Ouyang Z Y. Introduction to Lunar Science. Beijing: China Aerospace Press, 2005
    [66]
    Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000, 407(6802): 361 doi: 10.1038/35030069
    [67]
    Haskin L A, Colson R O, Lindstrom D J, et al. Electrolytic smelting of lunar rock for oxygen, iron, and silicon // The Second Conference on Lunar Bases and Space Activities of the 21st Century. Washington D C, 1992: 411
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (1690) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频