Citation: | ZHENG Rui-xuan, BAO Yan-ping, WANG Zhong-liang. Intelligent control model of steelmaking using ferroalloy reduction and its application[J]. Chinese Journal of Engineering, 2021, 43(12): 1689-1697. doi: 10.13374/j.issn2095-9389.2021.10.07.004 |
[1] |
Zhu R, Han B C, Dong K, et al. A review of carbon dioxide disposal technology in the converter steelmaking process. Int J Miner Metall Mater, 2020, 27(11): 1421 doi: 10.1007/s12613-020-2065-5
|
[2] |
包燕平, 張超杰, 王敏. 煉鋼過程中合金減量化研究現狀及展望. 工程科學學報, 2018, 40(9):1017
Bao Y P, Zhang C J, Wang M. Situation and prospect on investigation of ferroalloy reduction during steelmaking. Chin J Eng, 2018, 40(9): 1017
|
[3] |
Kothari A K, Ranjan R, Singh R S, et al. A real-time ferroalloy model for the optimum ladle furnace treatment during the secondary steelmaking. Ironmak Steelmak, 2019, 46(3): 211 doi: 10.1080/03019233.2017.1368952
|
[4] |
Xing L D, Guo J L, Li X, et al. Control of TiN precipitation behavior in titanium-containing micro-alloyed steel. Mater Today Commun, 2020, 25: 101292 doi: 10.1016/j.mtcomm.2020.101292
|
[5] |
楊凌志, 王學義, 王志東, 等. 基于收得率動態庫的合金加料優化模型. 北京科技大學學報, 2014, 36(增刊1): 104
Yang L Z, Wang X Y, Wang Z D, et al. Alloy charging optimization model based on the yield dynamic libraries. J Univ Sci Technol Beijing, 2014, 36(Suppl 1): 104
|
[6] |
Nath N K, Mandal K, Singh A K, et al. Ladle furnace on-line reckoner for prediction and control of steel temperature and composition. Ironmak Steelmak, 2006, 33(2): 140 doi: 10.1179/174328106X80082
|
[7] |
韓敏, 徐俏, 趙耀, 等. 基于收得率預測模型的轉爐煉鋼合金加入量計算. 煉鋼, 2010, 26(1):44
Han M, Xu Q, Zhao Y, et al. Calculation of alloy addition to yied-predict model BOF steel-making. Steelmaking, 2010, 26(1): 44
|
[8] |
Han M, Xu Q. Integrated optimization model for alloy addition of basic oxygen furnace based on Particle Swarm Optimization // 2010 IEEE International Conference on Systems, Man and Cybernetics. Istanbul, 2010: 4257
|
[9] |
耿濤, 鄒長東, 趙家七, 等. 鋁鎮靜鋼的成本最優化合金配料模型研究. 冶金自動化, 2019, 43(3):40
Geng T, Zou C D, Zhao J Q, et al. Study on cost optimization of alloy batching model in Al-killed steel. Metall Ind Autom, 2019, 43(3): 40
|
[10] |
王星, 危尚好, 秦登平, 等. 煉鋼合金最小成本控制系統的開發及應用. 冶金自動化, 2019, 43(1):47
Wang X, Wei S H, Qin D P, et al. Development and application of alloy minimum cost control system for steelmaking. Metall Ind Autom, 2019, 43(1): 47
|
[11] |
龔偉, 姜周華, 鄭萬, 等. 轉爐冶煉過程中合金成分控制模型. 東北大學學報, 2002, 23(12):1155
Gong W, Jiang Z H, Zheng W, et al. Component controlling model in BOF steelmaking process. J Northeast Univ, 2002, 23(12): 1155
|
[12] |
徐喆. 鋼包精煉爐合金添加量的優化設定與應用[學位論文]. 沈陽: 東北大學, 2012
Xu Z. Optimal Setting of the Amount of Alloying Additions for Ladle Furnace and Its Application [Dissertation]. Shenyang: Northeastern University, 2012
|
[13] |
Ekmek?i ī, Yetisken Y, ?amdali ü. Mass balance modeling for electric arc furnace and ladle furnace system in steelmaking facility in Turkey. J Iron Steel Res Int, 2007, 14(5): 1
|
[14] |
魏春新, 李紀祥, 張越, 等. 影響ANS-OB精煉合金收得率的因素及對策. 煉鋼, 2003, 19(2): 26
Wei C X, Li J X, Zhang Y, et al. Factors affecting yield of alloy in ANS-OB ladle refining process and prevention. Steelmaking, 2003, 19(2): 26
|
[15] |
張晨. 鋼包精煉工藝對釩氮合金收得率的影響. 鋼鐵釩鈦, 2003, 24(4):44 doi: 10.3969/j.issn.1004-7638.2003.04.009
Zhang C. Effect of ladle refining technique on yielding rate of VN alloy. Iron Steel Vanadium Titanium, 2003, 24(4): 44 doi: 10.3969/j.issn.1004-7638.2003.04.009
|
[16] |
Lu S, Lu Z. A new clustering algorithm for categorical attributes. Int J Miner Metall Mater, 2000, 7(4): 318
|
[17] |
Geng Z, Liu R. Optimization research on the “deoxidation alloying” batching scheme of molten steel based on linear programming method // Materials Science, Energy Technology And Power Engineering III. Hohhot, 2019: 020070
|
[18] |
Ammar E S, Eljerbi T. On solving fuzzy rough multiobjective integer linear fractional programming problem. J Intell Fuzzy Syst, 2019, 37(5): 6499 doi: 10.3233/JIFS-182552
|
[19] |
Wang E J, Tsou C S. A simple multiple objective linear programming model on customization manufacturing for metal steel making effectiveness // 2014 IEEE International Conference on Industrial Engineering and Engineering Management. Selangor, 2014: 1285
|
[20] |
陳曉東, 鮑可進, 杜斌. 模糊線性規劃在轉爐合金模型中的應用. 江蘇大學學報(自然科學版), 2002, 23(1):66
Chen X D, Bao K J, Du B. The application of fuzzy linear programming in LD converter ferroalloy model control system. J Jiangsu Univ Sci Technol, 2002, 23(1): 66
|
[21] |
徐健. 基于模糊規劃的LF爐合金優化控制[學位論文]. 沈陽: 東北大學, 2012
Xu J. The Optimal Control of LF Alloying Component Based on Fuzzy Programming [Dissertation]. Shenyang: Northeastern University, 2012
|
[22] |
Yan B J, Zhang J L, Guo H W, et al. High-temperature performance prediction of iron ore fines and the ore-blending programming problem in sintering. Int J Miner Metall Mater, 2014, 21(8): 741 doi: 10.1007/s12613-014-0966-x
|
[23] |
Vujic S, Benovic T, Miljanovic I, et al. Fuzzy linear model for production optimization of mining systems with multiple entities. Int J Miner Metall Mater, 2011, 18(6): 633 doi: 10.1007/s12613-011-0488-8
|
[24] |
徐喆, 毛志忠. 鋼包精煉爐元素收得率的影響因素分析及預報. 鋼鐵, 2012, 47(3):34
Xu Z, Mao Z Z. Analysis and prediction of influencing factor on element recovery in ladle furnace. Iron Steel, 2012, 47(3): 34
|
[25] |
張思源, 包燕平, 張超杰, 等. BP神經網絡IF鋼鋁耗的預測模型. 工程科學學報, 2017, 39(4):511
Zhang S Y, Bao Y P, Zhang C J, et al. Prediction model of aluminum consumption with BP neural networks in IF steel production. Chin J Eng, 2017, 39(4): 511
|
[26] |
于鵬, 戰東平, 姜周華, 等. LF精煉終點成分預報模型開發. 材料與冶金學報, 2006, 5(1):20 doi: 10.3969/j.issn.1671-6620.2006.01.005
Yu P, Zhan D P, Jiang Z H, et al. Development of a terminal composition prediction model for steel refing with ladle furnace. J Mater Metall, 2006, 5(1): 20 doi: 10.3969/j.issn.1671-6620.2006.01.005
|
[27] |
Cui K, Jing X. Research on prediction model of geotechnical parameters based on BP neural network. Neural Comput Appl, 2019, 31(12): 8205 doi: 10.1007/s00521-018-3902-6
|
[28] |
Liu X, Wen B, Wang X H, et al. Prediction of hot ductility of low-carbon steels based on BP network. Int J Miner Metall Mater, 2001, 08(03): 182
|