Citation: | SHEN Heng-tao, AN Yong-ling, MAN Quan-yan, FENG Jin-kui. Application of MXenes as an anode materials for lithium-ion batteries[J]. Chinese Journal of Engineering, 2023, 45(2): 253-262. doi: 10.13374/j.issn2095-9389.2021.10.07.002 |
[1] |
Lin Z F, Shao H, Xu K, et al. MXenes as high-rate electrodes for energy storage. Trends Chem, 2020, 2(7): 654 doi: 10.1016/j.trechm.2020.04.010
|
[2] |
李勉, 黃慶. 三元層狀碳氮化合物(MAX 相)及其衍生二維納米材料(MXene)研究趨勢與展望. 無機材料學報, 2020, 35(1):1
Li M, Huang Q. Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes. J Inorg Mater, 2020, 35(1): 1
|
[3] |
Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23: 4248 doi: 10.1002/adma.201102306
|
[4] |
Pang J B, Mendes R G, Bachmatiuk A, et al. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev, 2019, 48(1): 72 doi: 10.1039/C8CS00324F
|
[5] |
Magnuson M, Mattesini M. Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films, 2017, 621: 108 doi: 10.1016/j.tsf.2016.11.005
|
[6] |
Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature, 2014, 516(7529): 78 doi: 10.1038/nature13970
|
[7] |
Liu F F, Zhou A G, Chen J F, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl Surf Sci, 2017, 416: 781 doi: 10.1016/j.apsusc.2017.04.239
|
[8] |
Alhabeb M, Maleski K, Mathis T S, et al. Selective etching of silicon from Ti3SiC2(MAX) to obtain 2D titanium carbide (MXene). Angew Chem Int Ed, 2018, 57(19): 5444 doi: 10.1002/anie.201802232
|
[9] |
Li T F, Yao L L, Liu Q L, et al. Fluorine-free synthesis of high-purity Ti3C2Tx(T=OH, O) via alkali treatment. Angew Chem Int Ed, 2018, 57(21): 6115 doi: 10.1002/anie.201800887
|
[10] |
Li Y B, Shao H, Lin Z F, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater, 2020, 19(8): 894 doi: 10.1038/s41563-020-0657-0
|
[11] |
Persson P O ?, Rosen J. Current state of the art on tailoring the MXene composition, structure, and surface chemistry. Curr Opin Solid State Mater Sci, 2019, 23(6): 100774 doi: 10.1016/j.cossms.2019.100774
|
[12] |
齊新, 陳翔, 彭思侃, 等. MXenes二維納米材料及其在鋰離子電池中的應用研究進展. 工程科學學報, 2019, 47(12):10
Qi X, Chen X, Peng S K, et al. Research progress on two-dimensional nanomaterials MXenes and their application for lithium-ion batteries. J Mater Eng, 2019, 47(12): 10
|
[13] |
Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater, 2017, 2(2): 16098 doi: 10.1038/natrevmats.2016.98
|
[14] |
Zheng W, Zhang P G, Tian W B, et al. Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Mater Chem Phys, 2018, 206: 270 doi: 10.1016/j.matchemphys.2017.12.034
|
[15] |
Hart J L, Hantanasirisakul K, Lang A C, et al. Control of MXenes’ electronic properties through termination and intercalation. Nat Commun, 2019, 10: 522 doi: 10.1038/s41467-018-08169-8
|
[16] |
Lee Y, Kim S J, Kim Y J, et al. Oxidation-resistant titanium carbide MXene films. J Mater Chem A, 2020, 8(2): 573 doi: 10.1039/C9TA07036B
|
[17] |
Persson I, Halim J, Hansen T W, et al. How much oxygen can a MXene surface take before it breaks? Adv Funct Mater, 2020, 30(47): 1909005
|
[18] |
Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004, 104(10): 4303 doi: 10.1021/cr030203g
|
[19] |
Naguib M, Come J, Dyatkin B, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun, 2012, 16(1): 61 doi: 10.1016/j.elecom.2012.01.002
|
[20] |
Mashtalir O, Naguib M, Mochalin V N, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun, 2013, 4: 1716 doi: 10.1038/ncomms2664
|
[21] |
Tang Q, Zhou Z, Shen P W. Are MXenes promising anode materials for Li-ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) Monolayer. J Am Chem Soc, 2012, 134(40): 16909 doi: 10.1021/ja308463r
|
[22] |
Sun D D, Wang M S, Li Z Y, et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem Commun, 2014, 47: 80 doi: 10.1016/j.elecom.2014.07.026
|
[23] |
Xie Y, Naguib M, Mochalin V N, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc, 2014, 136(17): 6385 doi: 10.1021/ja501520b
|
[24] |
Ren C G, Zhao M Q, Makaryan T, et al. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectrochem, 2016, 3(5): 689 doi: 10.1002/celc.201600059
|
[25] |
Lin Z Y, Sun D F, Huang Q, et al. Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. J Mater Chem A, 2015, 3(27): 14096 doi: 10.1039/C5TA01855B
|
[26] |
Liu D R, Wang L B, He Y, et al. Enhanced reversible capacity and cyclic performance of lithium-ion batteries using SnO2 interpenetrated MXene V2C architecture as anode materials. Energy Technol, 2021, 9(2): 2000753 doi: 10.1002/ente.202000753
|
[27] |
Seok D, Shin W H, Kang S W, et al. Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility. J Alloys Compd, 2021, 870: 159267 doi: 10.1016/j.jallcom.2021.159267
|
[28] |
Zhang C F, Kim S J, Ghidiu M, et al. Layered orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high performance Li-ion batteries. Adv Funct Mater, 2016, 26(23): 4143 doi: 10.1002/adfm.201600682
|
[29] |
Zhao M Q, Torelli M, Ren C E, et al. 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy, 2016, 30: 603 doi: 10.1016/j.nanoen.2016.10.062
|
[30] |
Ahmed B, Anjum D H, Gogotsi Y, et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy, 2017, 34: 249 doi: 10.1016/j.nanoen.2017.02.043
|
[31] |
Rakhi R B, Ahmed B, Hedhili M N, et al. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem Mater, 2015, 27(15): 5314 doi: 10.1021/acs.chemmater.5b01623
|
[32] |
Wang H, Feng H B, Li J H. Graphene and graphene-likelLayered transition metal dichalcogenides in energy conversion and storage. Small, 2014, 10(11): 2165 doi: 10.1002/smll.201303711
|
[33] |
Wu X, Wang Z, Yu M, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater, 2017, 29(24): 1607017 doi: 10.1002/adma.201607017
|
[34] |
Jin J, Xiao T, Zhang Y F, et al. Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion. Nanoscale, 2021, 13(47): 19740 doi: 10.1039/D1NR05799E
|
[35] |
Li J F, Han L, Li Y Q, et al. MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chem Eng J, 2020, 380: 122590 doi: 10.1016/j.cej.2019.122590
|
[36] |
Wang A N, Chen Y X, Liu L, et al. Sulfur nanoparticles/Ti3C2Tx MXene with an optimum sulfur content as a cathode for highly stable lithium-sulfur batteries. Dalton Trans, 2021, 50(16): 5574 doi: 10.1039/D1DT00381J
|
[37] |
Feng K, Li M, Liu W, et al. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications. Small, 2018, 14(8): 1702737 doi: 10.1002/smll.201702737
|
[38] |
Casimir A, Zhang H G, Ogoke O, et al. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy, 2016, 27: 359 doi: 10.1016/j.nanoen.2016.07.023
|
[39] |
Zhu X Q, Shen J L, Chen X F, et al. Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries. Chem Eng J, 2019, 378: 122212 doi: 10.1016/j.cej.2019.122212
|
[40] |
An Y L, Tian Y, Zhang Y C, et al. Two-dimensional silicon/carbon from commercial alloy and CO2 for lithium storage and flexible Ti3C2Tx MXene-based lithium-metal batteries. ACS Nano, 2020, 14(12): 17574 doi: 10.1021/acsnano.0c08336
|
[41] |
An Y L, Tian Y, Wei H, et al. Porosity- and graphitization-controlled fabrication of nanoporous dilicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode. Adv Funct Mater, 2020, 30(9): 1908721 doi: 10.1002/adfm.201908721
|
[42] |
Cao R G, Xu W, Lv D P, et al. Anodes for rechargeable lithium-sulfur batteries. Adv Energy Mater, 2015, 5(16): 1402273 doi: 10.1002/aenm.201402273
|
[43] |
Tian Y, An Y L, Wei C L, et al. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous Zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano, 2019, 13(10): 11676 doi: 10.1021/acsnano.9b05599
|
[44] |
Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol, 2017, 12(3): 194 doi: 10.1038/nnano.2017.16
|
[45] |
Fang Y Z, Zhang Y, Zhu K, et al. Lithiophilic three-dimensional porous Ti3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano, 2019, 13(12): 14319 doi: 10.1021/acsnano.9b07729
|
[46] |
Liu F F, Zhou J, Wang S W, et al. Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries. J Electrochem Soc, 2017, 164(4): A709 doi: 10.1149/2.0641704jes
|
[47] |
Zheng M, Guo R S, Liu Z C, et al. MoS2 intercalated p-Ti3C2 anode materials with sandwich-like three dimensional conductive networks for lithium-ion batteries. J Alloys Compd, 2018, 735: 1262 doi: 10.1016/j.jallcom.2017.11.250
|
[48] |
Zhao S S, Meng X, Zhu K, et al. Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Storage Mater, 2017, 8: 42 doi: 10.1016/j.ensm.2017.03.012
|
[49] |
Zheng W, Zhang P, Chen J, et al. In situ synthesis of CNTs@Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries. J Mater Chem A, 2018, 6(8): 3543 doi: 10.1039/C7TA10394H
|
[50] |
Huang J M, Meng R J, Zu L H, et al. Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries. Nano Energy, 2018, 46: 20
|
[51] |
Zhang Y L, Mu Z J, Lai J P, et al. MXene/Si@SiOx@C Layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano, 2019, 13(2): 2167
|
[52] |
Zuo D C, Song S C, An C S, et al. Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage. Nano Energy, 2019, 62: 401 doi: 10.1016/j.nanoen.2019.05.062
|
[53] |
Xia M T, Chen B J, Gu F, et al. Ti3C2Tx MXene nanosheets as a robust and conductive tight on Si anodes significantly enhance electrochemical lithium storage performance. ACS Nano, 2020, 14(4): 5111 doi: 10.1021/acsnano.0c01976
|
[54] |
Jiang F Y, Du R, Yan X S, et al. Ferroferric oxide nanoclusters decorated Ti3C2Tx nanosheets as high performance anode materials for lithium ion batteries. Electrochimca Acta, 2020, 329: 135146 doi: 10.1016/j.electacta.2019.135146
|
[55] |
Bai J, Zhao B C, Lin S, et al. Construction of hierarchical V4C3-MXene/MoS2/C nanohybrids for high rate lithium-ion batteries. Nanoscale, 2020, 12(2): 1144 doi: 10.1039/C9NR07646H
|
[56] |
Zhang Y J, Li J L, Gong Z W, et al. Nitrogen and sulfur co-doped vanadium carbide MXene for highly reversible lithium-ion storage. J Colloid Interface Sci, 2021, 587: 489 doi: 10.1016/j.jcis.2020.12.044
|
[57] |
Zhong S L, Ju S L, Shao Y F, et al. Magnesium hydride nanoparticles anchored on MXene sheets as high capacity anode for lithium-ion batteries. J Energy Chem, 2021, 62: 431 doi: 10.1016/j.jechem.2021.03.049
|
[58] |
Zhu M H, Deng X Q, Ke J, et al. Graphite nano-modified SnO2–Ti2C MXene as anode material for high-performance lithium-ion batteries. J Alloys Compd, 2021, 886: 161139 doi: 10.1016/j.jallcom.2021.161139
|
[59] |
Wang Z T, Wang R C, Tang L B, et al. A sandwich-like Ti3C2@VO2 composite synthesized by a hydrothermal method for lithium storage. Solid State Ion, 2021, 369: 115714 doi: 10.1016/j.ssi.2021.115714
|
[60] |
Tian Y, An Y L, Feng J K. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl Mater Interfaces, 2019, 11(10): 10004 doi: 10.1021/acsami.8b21893
|
[61] |
Wang Z J, Wang F, Liu K Y. Cobalt phosphide nanoparticles grown on Ti3C2 nanosheet for enhanced lithium ions storage performances. J Alloys Compd, 2021, 853: 157136 doi: 10.1016/j.jallcom.2020.157136
|