<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 44 Issue 6
May  2022
Turn off MathJax
Article Contents
HU Wen-Tao, TIAN Kai, LI Jia-hong, LIANG Si-yi, SONG Chao, LI Jie, LIU Xin-wei, WANG Hua-Jun. Optimization of depth clarification device for beneficiation circulating water based on solid-liquid two-phase flow simulation[J]. Chinese Journal of Engineering, 2022, 44(6): 993-1001. doi: 10.13374/j.issn2095-9389.2021.10.01.003
Citation: HU Wen-Tao, TIAN Kai, LI Jia-hong, LIANG Si-yi, SONG Chao, LI Jie, LIU Xin-wei, WANG Hua-Jun. Optimization of depth clarification device for beneficiation circulating water based on solid-liquid two-phase flow simulation[J]. Chinese Journal of Engineering, 2022, 44(6): 993-1001. doi: 10.13374/j.issn2095-9389.2021.10.01.003

Optimization of depth clarification device for beneficiation circulating water based on solid-liquid two-phase flow simulation

doi: 10.13374/j.issn2095-9389.2021.10.01.003
More Information
  • Corresponding author: E-mail: alabozhizi@163.com
  • Received Date: 2021-10-01
    Available Online: 2022-01-20
  • Publish Date: 2022-06-25
  • Some beneficiation circulating water contains excess highly dispersed suspended particles, which are difficult to clarify only by simple concentration and sedimentation and cannot meet the requirements of reuse. To solve this problem, a clarification device was developed for removing the solid suspended matter from beneficiation circulating water, which consists of a hydraulic circulation area and a particle sedimentation area and integrating mixing, flocculation, and sedimentation. The flow field inside the gadget has a big influence on how well it works. The structural and operating parameters of the gadget were improved using the computational fluid dynamics approach to increase the device’s performance. A two-dimensional physical model of the deep clarification device for beneficiation circulating water was established. Numerical simulation research on its main structural parameters and operating parameters were conducted by using software Fluent and choosing the Mixture multiphase flow model and RNG k?ε turbulence model. The effects of feed water nozzle length, throat to nozzle diameter ratio, sludge settling area opening size, and device diameter on the internal flow field were investigated. The average turbulent kinetic energy in the sludge settling zone can be reduced by reducing the length of the nozzle in the hydraulic circulation region, increasing the ratio of the throat to nozzle diameter and the opening size of the sludge settling area, and increasing the diameter of the device. Due to the fact that the turbulent kinetic energy is the kinetic energy of fluid produced by turbulent pulsation, the turbulent degree of the flow field in the sludge settling area is reduced, the effect of turbulent flow in the flow field on particle settling is weakened, and the removal effect of the device on suspended particles is improved. Simultaneously, it is found that at the same suspended solids concentration, reducing the inlet flow rate or increasing the suspended particle size helps to improve the removal rate of suspended solids. When the inlet flow rate is 0.1 m·s-1 and the coagulated suspended particles form particles with particle size more than 100 μm, the removal effect of slime particles in beneficiation circulating water is remarkable.

     

  • loading
  • [1]
    Chen W M, Wu S M, Lei Y L, et al. China's water footprint by Province, and inter-provincial transfer of virtual water. Ecol Indic, 2017, 74: 321 doi: 10.1016/j.ecolind.2016.11.037
    [2]
    Zhou S J, Deng R J, Hursthouse A. Risk assessment of potentially toxic elements pollution from mineral processing steps at xikuangshan antimony plant, Hunan, China. Processes, 2019, 8(1): 29 doi: 10.3390/pr8010029
    [3]
    Yang X L, Bu X N, Xie G Y, et al. A comparative study on the influence of mono, di, and trivalent cations on the chalcopyrite and pyrite flotation. J Mater Res Technol, 2021, 11: 1112 doi: 10.1016/j.jmrt.2021.01.086
    [4]
    Bicak O, Ozturk Y, Ozdemir E, et al. Modelling effects of dissolved ions in process water on flotation performance. Miner Eng, 2018, 128: 84 doi: 10.1016/j.mineng.2018.08.031
    [5]
    Castillo C, Ihle C F, Jeldres R I. Chemometric optimisation of a copper sulphide tailings flocculation process in the presence of clays. Minerals, 2019, 9(10): 582 doi: 10.3390/min9100582
    [6]
    Chen Y F, Fan R, An D F, et al. Water softening by induced crystallization in fluidized bed. J Environ Sci, 2016, 50: 109 doi: 10.1016/j.jes.2016.08.014
    [7]
    Zubkova O, Alexeev A, Polyanskiy A, et al. Complex processing of saponite waste from a diamond-mining enterprise. Appl Sci, 2021, 11(14): 6615 doi: 10.3390/app11146615
    [8]
    Liang G Q, Zhao Q, Liu B, et al. Treatment and reuse of process water with high suspended solids in low-grade iron ore dressing. J Clean Prod, 2021, 278: 123493 doi: 10.1016/j.jclepro.2020.123493
    [9]
    徐帥, 周興龍, 劉肖楚, 等. 濃密機發展歷程、分類及其高效化改進研究現狀. 金屬礦山, 2021(5):167

    Xu S, Zhou X L, Liu X C, et al. Development process, classification and high efficiency modification status of the thickener. Met Mine, 2021(5): 167
    [10]
    楊保東, 謝紀元, 李鵬. 高效濃密機機理研究. 有色金屬(選礦部分), 2011(5):38

    Yang B D, Xie J Y, Li P. Research on mechanism of high efficiency thickener. Nonferrous Met (Miner Process Sect), 2011(5): 38
    [11]
    陳慶來, 李從軍, 楊勇. ?53 m中心傳動自動提耙高效濃縮機技術特點分析. 現代礦業, 2009, 25(6):130 doi: 10.3969/j.issn.1674-6082.2009.06.048

    Chen Q L, Li C J, Yang Y. Analysis on technical characteristics of ?53 m center drive automatic rake lifting high efficiency thickener. Mod Min, 2009, 25(6): 130 doi: 10.3969/j.issn.1674-6082.2009.06.048
    [12]
    謝丹丹, 童雄, 謝賢, 等. 濃密機在選礦中的應用現狀及研究進展. 礦產保護與利用, 2015(2):73

    Xie D D, Tong X, Xie X, et al. The application and development of thickener in mineral processing technology. Conserv Util Miner Resour, 2015(2): 73
    [13]
    徐衍睿, 班曉娟, 王笑琨, 等. 面向視網膜脫離手術的硅油填充模擬. 工程科學學報, 2021, 43(9):1233

    Xu Y R, Ban X J, Wang X K, et al. Simulations of silicone oil filling for use in retinal detachment surgery. Chin J Eng, 2021, 43(9): 1233
    [14]
    Cui Y, Ravnik J, Steinmann P, et al. Settling characteristics of nonspherical porous sludge flocs with nonhomogeneous mass distribution. Water Res, 2019, 158: 159 doi: 10.1016/j.watres.2019.04.017
    [15]
    Gao H W, Stenstrom M K. Development and applications in computational fluid dynamics modeling for secondary settling tanks over the last three decades: A review. Water Environ Res, 2020, 92(6): 796 doi: 10.1002/wer.1279
    [16]
    Shah M T, Parmar H B, Rhyne L D, et al. A novel settling tank for produced water treatment: CFD simulations and PIV experiments. J Petroleum Sci Eng, 2019, 182: 106352 doi: 10.1016/j.petrol.2019.106352
    [17]
    姚娟娟, 宋莉莉, 劉存. 斜板沉淀池前配水渠的數值模擬及結構優化. 水資源與水工程學報, 2020, 31(5):120

    Yao J J, Song L L, Liu C. Numerical simulation and structural optimization of water distribution channel between the flocculation tank and sedimentation tank with inclined plate settler. J Water Resour Water Eng, 2020, 31(5): 120
    [18]
    魏文禮, 胡嘉冀, 王長洲, 等. 輻流式沉淀池出口位置優化數值模擬研究. 應用力學學報, 2021, 38(2):670

    Wei W L, Hu J J, Wang C Z, et al. Numerical simulation for the influence of outlet location on the hydraulic characteristic in a radical settling tank. Chin J Appl Mech, 2021, 38(2): 670
    [19]
    蘭斌, 徐驥, 劉志成, 等. 連續操作密相流化床顆粒停留時間分布特性模擬放大研究. 化工學報, 2021, 72(1):521

    Lan B, Xu J, Liu Z C, et al. Simulation of scale-up effect of particle residence time distribution characteristics in continuously operated dense-phase fluidized beds. Ciesc J, 2021, 72(1): 521
    [20]
    劉玉玲, 張沛, 魏文禮, 等. 輻流式沉淀池液固兩相流力學特性三維數值模擬. 水資源與水工程學報, 2013, 24(4):25

    Liu Y L, Zhang P, Wei W L, et al. Numerical simulation of mechanical property of solid-liquid two-phase turbulent flow in a secondary sedimentation tank of radial flow. J Water Resour Water Eng, 2013, 24(4): 25
    [21]
    Yu Q H, Mei Z Y, Bai M Q, et al. Cooling performance improvement of impingement hybrid synthetic jets in a confined space with the aid of a fluid diode. Appl Therm Eng, 2019, 157: 113749 doi: 10.1016/j.applthermaleng.2019.113749
    [22]
    Behrangi F, Banihashemi M A, Namin M M, et al. A new approach to solve mixture multi-phase flow model using time splitting projection method. Prog Comput Fluid Dyn Int J, 2019, 19(3): 160 doi: 10.1504/PCFD.2019.099595
    [23]
    Hnaien N, Marzouk S, Aissia H B, et al. Numerical investigation of velocity ratio effect in combined wall and offset jet flows. J Hydrodyn, 2018, 30(6): 1105 doi: 10.1007/s42241-018-0136-0
    [24]
    Siswantara A I, Budiarso, Darmawan S. Investigation of inverse-turbulent-Prandtl number with four RNG k?ε turbulence models on compressor discharge pipe of bioenergy micro gas turbine. Appl Mech Mater, 2016, 819: 392 doi: 10.4028/www.scientific.net/AMM.819.392
    [25]
    Tarpagkou R, Pantokratoras A. The influence of lamellar settler in sedimentation tanks for potable water treatment—A computational fluid dynamic study. Powder Technol, 2014, 268: 139 doi: 10.1016/j.powtec.2014.08.030
    [26]
    譚立新, 唐敏, 徐長賀. 斜板對豎流式沉淀池影響的三維數值模擬. 水力發電學報, 2018, 37(10):86 doi: 10.11660/slfdxb.20181010

    Tan L X, Tang M, Xu C H. Three-dimensional numerical simulations of the effects of slanting plates in vertical flow desilting tank. J Hydroelectr Eng, 2018, 37(10): 86 doi: 10.11660/slfdxb.20181010
    [27]
    Shahrokhi M, Rostami F, Md Said M A, et al. The effect of number of baffles on the improvement efficiency of primary sedimentation tanks. Appl Math Model, 2012, 36(8): 3725 doi: 10.1016/j.apm.2011.11.001
    [28]
    Goula A M, Kostoglou M, Karapantsios T D, et al. A CFD methodology for the design of sedimentation tanks in potable water treatment: Case study: The influence of a feed flow control baffle. Chem Eng J, 2008, 140(1-3): 110 doi: 10.1016/j.cej.2007.09.022
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article views (465) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频