<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
LIU Wei, YANG Shu-feng, LI Jing-she. Review of research on inclusion motion behaviors at the steel?slag interface[J]. Chinese Journal of Engineering, 2021, 43(12): 1647-1655. doi: 10.13374/j.issn2095-9389.2021.09.29.007
Citation: LIU Wei, YANG Shu-feng, LI Jing-she. Review of research on inclusion motion behaviors at the steel?slag interface[J]. Chinese Journal of Engineering, 2021, 43(12): 1647-1655. doi: 10.13374/j.issn2095-9389.2021.09.29.007

Review of research on inclusion motion behaviors at the steel?slag interface

doi: 10.13374/j.issn2095-9389.2021.09.29.007
More Information
  • Corresponding author: E-mail: yangshufeng@ustb.edu.cn
  • Received Date: 2021-09-29
    Available Online: 2021-10-19
  • Publish Date: 2021-12-24
  • The removal of inclusions in steel has always been a hot topic in the field of clean steel, and it is important for improving the quality of steel and guaranteeing product performance. Inclusions in steel are mainly removed by allowing them to float to the top slag and get absorbed in it. This removal process can be subdivided into three steps: growing up and floating in the molten steel, separation through the steel-slag interface, and dissolution in the liquid slag phase. Owing to the difference in physical properties of a steel-slag system and its interfacial characteristics, incompatible inclusions cannot be separated by crossing the interface, making this step a key factor for the inclusions’ removal. Moreover, this step occurs with the rapid physical transition of the steel and slag phases along with physical and chemical phenomena in parallel as well as the presence of high temperature, opaqueness, and other characteristics of the impact, making the study more challenging. In recent years, with the advancement of technologies such as numerical simulation and high-temperature equipment, the study of the behavior of inclusions crossing the interface has gradually increased. The classical force analysis model can predict the interfacial behavior of inclusions semiquantitatively and has a certain guidance role for slag system optimization. The computational fluid dynamics (CFD) model has advantages in the study of interfacial phenomena of inclusions, but it is still in the early stage of research. In the future, it is expected to expand to a larger scale, including more behavior scenarios and phase states. The combination of water and numerical models is an effective method to study interfacial behavior. The simulation results at a microscopic scale will be further extended with the advancement of experimental technology in the future. The high-temperature confocal in situ observation is the most direct research method, which is extremely helpful to understand and reveal the interfacial behavior of inclusions. Furthermore, it is expected to reveal the key mechanism of inclusions removal in a more complete and in-depth manner through equipment improvement in the future.

     

  • loading
  • [1]
    Nakajima K, Okamura K. Inclusion transfer behavior across molten steel–slag interface // The 4th International Conference on Molten Slags and Fluxes. Sendai, 1992: 505
    [2]
    Liu C, Yang S F, Li J S, et al. Motion behavior of nonmetallic inclusions at the interface of steel and slag. part I: Model development, validation, and preliminary analysis. Metall Mater Trans B, 2016, 47(3): 1882
    [3]
    Xuan C J, Persson E S, Sevastopolev R, et al. Motion and detachment behaviors of liquid inclusion at molten steel?slag interfaces. Metall Mater Trans B, 2019, 50(4): 1957 doi: 10.1007/s11663-019-01568-2
    [4]
    Liu W, Yang S F, Li J S, et al. Numerical model of inclusion separation from liquid metal with consideration of dissolution in slag. J Iron Steel Res Int, 2019, 26(11): 1147 doi: 10.1007/s42243-018-0212-2
    [5]
    Yang S F, Liu W, Li J S. Motion of solid particles at molten metal?liquid slag interface. JOM, 2015, 67(12): 2993 doi: 10.1007/s11837-015-1642-y
    [6]
    Bouris D, Bergeles G. Investigation of inclusion re-entrainment from the steel?slag interface. Metall Mater Trans B, 1998, 29(3): 641 doi: 10.1007/s11663-998-0099-6
    [7]
    Shannon G N, Sridhar S. Modeling Al2O3 inclusion separation across steel?slag interfaces. Scand J Metall, 2005, 34(6): 353 doi: 10.1111/j.1600-0692.2005.00755.x
    [8]
    Valdez M, Shannon G S, Sridhar S. The ability of slags to absorb solid oxide inclusions. ISIJ Int, 2006, 46(3): 450 doi: 10.2355/isijinternational.46.450
    [9]
    Strandh J, Nakajima K, Eriksson R, et al. A mathematical model to study liquid inclusion behavior at the steel?slag interface. ISIJ Int, 2005, 45(12): 1838 doi: 10.2355/isijinternational.45.1838
    [10]
    Strandh J, Nakajima K, Eriksson R, et al. Solid inclusion transfer at a steel?slag interface with focus on tundish conditions. ISIJ Int, 2005, 45(11): 1597 doi: 10.2355/isijinternational.45.1597
    [11]
    Shannon G, White L, Sridhar S. Modeling inclusion approach to the steel/slag interface. Mater Sci Eng A, 2008, 495(1-2): 310 doi: 10.1016/j.msea.2007.09.087
    [12]
    Yang S F, Li J S, Liu C, et al. Motion behavior of nonmetal inclusions at the interface of steel and slag. part II:Model application and discussion. Metall Mater Trans B, 2014, 45(6): 2453
    [13]
    Liu W, Yang S F, Li J S. Calculation of static suspension depth and meniscus shape of a solid spherical inclusion at the steel?slag interface. Metall Mater Trans B, 2020, 51(2): 422 doi: 10.1007/s11663-020-01770-7
    [14]
    S?der M, J?nsson P, Jonsson L. Inclusion growth and removal in gas-stirred ladles. Steel Res Int, 2004, 75(2): 128 doi: 10.1002/srin.200405938
    [15]
    Zhu M Y, Zheng S G, Huang Z Z, et al. Numerical simulation of nonmetallic inclusions behaviour in gas-stirred ladles. Steel Res Int, 2005, 76(10): 718 doi: 10.1002/srin.200506085
    [16]
    Miki Y, Thomas B G, Denissov A, et al. Model of inclusion removal during RH degassing of steel. Iron Steelmaker, 1997, 24(8): 31
    [17]
    Miki Y, Thomas B G. Modeling of inclusion removal in a tundish. Metall Mater Trans B, 1999, 30(4): 639 doi: 10.1007/s11663-999-0025-6
    [18]
    Wang L T, Zhang Q Y, Deng C H, et al. Mathematical model for removal of inclusion in molten steel by injecting gas at ladle shroud. ISIJ Int, 2005, 45(8): 1138 doi: 10.2355/isijinternational.45.1138
    [19]
    Thomas B G, Zhang L F. Mathematical modeling of iron and steel making processes. mathematical modeling of fluid flow in continuous casting. ISIJ Int, 2001, 41(10): 1181
    [20]
    Cho S M, Thomas B G, Hwang J Y, et al. Modeling of inclusion capture in a steel slab caster with vertical section and bending. Metals, 2021, 11(4): 654 doi: 10.3390/met11040654
    [21]
    Geng D Q, Zheng J X, Wang K, et al. Simulation on decarburization and inclusion removal process in the ruhrstahl-heraeus (RH) process with ladle bottom blowing. Metall Mater Trans B, 2015, 46(3): 1484 doi: 10.1007/s11663-015-0314-1
    [22]
    Chattopadhyay K, Isac M, Guthrie R I L. Considerations in using the discrete phase model (DPM). Steel Res Int, 2011, 82(11): 1287 doi: 10.1002/srin.201000214
    [23]
    Duan H J, Ren Y, Zhang L F. Inclusion capture probability prediction model for bubble floatation in turbulent steel flow. Metall Mater Trans B, 2019, 50(1): 16 doi: 10.1007/s11663-018-1462-x
    [24]
    陳開來, 王德永, 屈天鵬, 等. 鋼中液態夾雜物聚并行為的數學物理模擬. 工程科學學報, 2019, 41(10):1280

    Chen K L, Wang D Y, Qu T P, et al. Physical and numerical simulation of the coalescence of liquid inclusion particles in molten steel. Chin J Eng, 2019, 41(10): 1280
    [25]
    Xu Y G, Ersson M, J?nsson P. Numerical simulation of single argon bubble rising in molten metal under a laminar flow. Steel Res Int, 2015, 86(11): 1289 doi: 10.1002/srin.201400355
    [26]
    Xuan C J, Persson E S, Jensen J, et al. A novel evolution mechanism of Mg?Al?oxides in liquid steel: Integration of chemical reaction and coalescence-collision. J Alloys Compd, 2020, 812: 152149 doi: 10.1016/j.jallcom.2019.152149
    [27]
    Liu W, Yang S F, Li J S, et al. Numerical simulation of the three-phase flow of a bubble interacting with the steel?slag interface during the secondary refining process. Metall Mater Trans B, 2019, 50(4): 1542 doi: 10.1007/s11663-019-01580-6
    [28]
    Liu W, Liu J, Zhao H X, et al. CFD modeling of solid inclusion motion and separation from liquid steel to molten slag. Metall Mater Trans B, 2021, 52(4): 2430 doi: 10.1007/s11663-021-02203-9
    [29]
    黃奧, 汪厚植, 顧華志, 等. 氣幕擋墻中間包夾雜物去除的水模型研究. 特殊鋼, 2009, 30(1):7

    Huang A, Wang H Z, Gu H Z, et al. A study on water modeling of inclusion removal in tundish with gas curtain. Special Steel, 2009, 30(1): 7
    [30]
    倪冰, 羅志國, 狄瞻霞, 等. 板坯連鑄結晶器內夾雜物去除的水模實驗研究. 連鑄, 2009, 34(1):1

    Ni B, Luo Z G, Di Z X, et al. Experimental study on inclusion removal in slab continuous casting mold by water modeling. Continuous Cast, 2009, 34(1): 1
    [31]
    陳向陽, 曹磊, 胡建東, 等. LF精煉爐混合特性及夾雜物去除的水模型研究. 鋼鐵, 2009, 44(12):27 doi: 10.3321/j.issn:0449-749X.2009.12.006

    Chen X Y, Cao L, Hu J D, et al. Study on water modeling for mixing trait and inclusion removing of LF. Iron Steel, 2009, 44(12): 27 doi: 10.3321/j.issn:0449-749X.2009.12.006
    [32]
    Cho J S, Lee H G. Cold model study on inclusion removal from liquid steel using fine gas bubbles. ISIJ Int, 2001, 41(2): 151 doi: 10.2355/isijinternational.41.151
    [33]
    Nakaoka T, Taniguchi S, Matsumoto K, et al. Particle-size-grouping method of lnclusion agglomeration and its application to water model experiments. ISIJ Int, 2001, 41(10): 1103 doi: 10.2355/isijinternational.41.1103
    [34]
    周業連, 鄧志銀, 朱苗勇. 固/液態夾雜物穿過鋼渣界面的分離機理. 過程工程學報, 2018, 18(1):96 doi: 10.12034/j.issn.1009-606X.217237

    Zhou Y L, Deng Z Y, Zhu M Y. Separation mechanism of solid/liquid inclusions transfer at steel-slag interface. Chin J Process Eng, 2018, 18(1): 96 doi: 10.12034/j.issn.1009-606X.217237
    [35]
    楊宏博. 夾雜物穿越鋼渣界面過程運動行為研究[學位論文]. 北京: 北京科技大學, 2015

    Yang H B. Study on Moving Behavior of Inclusion during Process of Passing Steel−Slag Interface [Dissertation]. Beijing: University of Science and Technology Beijing, 2015
    [36]
    劉超, 李京社, 孫麗媛, 等. 上浮速度對鋼渣界面夾雜物去除的影響. 特殊鋼, 2014, 35(5):5 doi: 10.3969/j.issn.1003-8620.2014.05.002

    Liu C, Li J S, Sun L Y, et al. Influence of floatation velocity on removal of inclusions at steel?slag interface. Special Steel, 2014, 35(5): 5 doi: 10.3969/j.issn.1003-8620.2014.05.002
    [37]
    劉超. 鋼渣界面夾雜物分離去除的理論研究 [學位論文]. 北京: 北京科技大學, 2014

    Liu C. Theoretical Study on the Separation and Removal of Inclusions at the Steel Slag Interface [Dissertation]. Beijing: University of Science and Technology Beijing, 2014
    [38]
    Kimura S, Nakajima K, Mizoguchi S. Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels. Metall Mater Trans B, 2001, 32(1): 79 doi: 10.1007/s11663-001-0010-1
    [39]
    Vantilt S, Coletti B, Blanpain B, et al. Observation of inclusions in manganese-silicon killed steels at steel?gas and steel-slag interfaces. ISIJ Int, 2004, 44(1): 1 doi: 10.2355/isijinternational.44.1
    [40]
    Liu J, Guo M, Jones P T, et al. In situ observation of the direct and indirect dissolution of MgO particles in CaO?Al2O3?SiO2-based slags. J Eur Ceram Soc, 2007, 27(4): 1961 doi: 10.1016/j.jeurceramsoc.2006.05.107
    [41]
    Kimura S, Nabeshima Y, Nakajima K, et al. Behavior of nonmetallic inclusions in front of the solid?liquid interface in low-carbon steels. Metall Mater Trans B, 2000, 31(5): 1013 doi: 10.1007/s11663-000-0077-0
    [42]
    Misra P, Chevrier V, Sridhar S, et al. In situ observations of inclusions at the (Mn, Si)-killed steel/CaO?Al2O3 interface. Metall Mater Trans B, 2000, 31(5): 1135 doi: 10.1007/s11663-000-0090-3
    [43]
    Coletti B, Blanpain B, Vantilt S, et al. Observation of calcium aluminate inclusions at interfaces between Ca-treated, Al-killed steels and slags. Metall Mater Trans B, 2003, 34(5): 533 doi: 10.1007/s11663-003-0021-1
    [44]
    Wikstr?m J, Nakajima K, Shibata H, et al. In situ studies of the agglomeration phenomena for calcium-alumina inclusions at liquid steel?liquid slag interface and in the slag. Mater Sci Eng:A, 2008, 495(1-2): 316 doi: 10.1016/j.msea.2007.09.084
    [45]
    Wikstr?m J, Nakajima K, Shibata H, et al. In situ studies of agglomeration between Al2O3?CaO inclusions at metal/gas, metal/slag interfaces and in slag. Ironmak Steelmaker, 2008, 35(8): 589 doi: 10.1179/174328108X284589
    [46]
    Liu J H, Verhaeghe F, Guo M X, et al. In situ observation of the dissolution of spherical alumina particles in CaO?Al2O3?SiO2 melts. J Am Ceram Soc, 2007, 90(12): 3818
    [47]
    Yin H B, Shibata H, Emi T, et al. “in-situ” observation of collision, agglomeration and cluster formation of alumina inclusion particles on steel melts. ISIJ Int, 1997, 37(10): 936 doi: 10.2355/isijinternational.37.936
    [48]
    Wikstr?m J, Nakajima K, Jonsson L, et al. Application of a model for liquid inclusion separation at a steel?slag interface for laboratory and industrial situations. Steel Res Int, 2008, 79(11): 826 doi: 10.1002/srin.200806206
    [49]
    Rocha V C, Pereira J A M, Yoshioka A, et al. Evaluation of secondary steelmaking slags and their relation with steel cleanliness. Metall Mater Trans B, 2017, 48(3): 1423 doi: 10.1007/s11663-017-0935-7
    [50]
    Wang H M, Li G R, Dai Q X, et al. Effect of additives on viscosity of LATS refining ladle slag. ISIJ Int, 2006, 46(5): 637 doi: 10.2355/isijinternational.46.637
    [51]
    Hanao M, Tanaka T, Kawamoto M, et al. Evaluation of surface tension of molten slag in multi-component systems. ISIJ Int, 2007, 47(7): 935 doi: 10.2355/isijinternational.47.935
    [52]
    Duchesne M A, Hughes R W. Slag density and surface tension measurements by the constrained sessile drop method. Fuel, 2017, 188: 173 doi: 10.1016/j.fuel.2016.10.023
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (1864) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频