<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
ZHANG Jiong-ming, ZHOU Qing-hai, YIN Yan-bin, WU Xing-xing, LIU Hua-yang. Research and application of three-dimensional dynamic secondary cooling and accurate soft reduction for continuous casting slab[J]. Chinese Journal of Engineering, 2021, 43(12): 1666-1678. doi: 10.13374/j.issn2095-9389.2021.09.29.004
Citation: ZHANG Jiong-ming, ZHOU Qing-hai, YIN Yan-bin, WU Xing-xing, LIU Hua-yang. Research and application of three-dimensional dynamic secondary cooling and accurate soft reduction for continuous casting slab[J]. Chinese Journal of Engineering, 2021, 43(12): 1666-1678. doi: 10.13374/j.issn2095-9389.2021.09.29.004

Research and application of three-dimensional dynamic secondary cooling and accurate soft reduction for continuous casting slab

doi: 10.13374/j.issn2095-9389.2021.09.29.004
More Information
  • Corresponding author: Email: jmz2203@sina.com
  • Received Date: 2021-09-29
    Available Online: 2021-10-27
  • Publish Date: 2021-12-24
  • The surface and corner cracks of continuous casting billet form during the continuous casting process, especially in medium-carbon steel. Surface defects of such billets are directly related to the secondary cooling process of continuous casting, while the center deviation of the billet, center shrinkage, and center loosening in medium-carbon steel, medium-carbon alloy steel, and high-carbon steel are especially prominent. Such quality defects are related to the secondary cooling and press-down process of continuous casting. These two defects are the main factors restricting continuous casting production. The secondary cooling of the continuous casting process has an important influence on the surface and internal quality of the slab, especially the temperature of the slab corners, which directly affects the surface quality of the slab. Under the existing process conditions, the mathematical model for calculating the solidification heat transfer of the slab in the secondary cooling zone is calibrated and improved, and a three-dimensional secondary cooling model is developed to solve the influence of uneven cooling due to water distribution on the temperature of the slab. This controls the surface quality of the slab, especially the corner cracks of the slab, and improves and optimizes the slab continuous casting secondary cooling system to improve the slab quality. An equation for calculating the soft reduction parameters is proposed, and the existing soft reduction process is optimized by combining the developed three-dimensional secondary cooling model with the proposed and applied controllable single-stage soft reduction and unsteady soft reduction control to solve the internal quality problems, such as central segregation, central porosity, and shrinkage of the continuous casting slab. At the same time, the model database is optimized to make the data more complete and the model calculation more accurate. This model adds the technology of mixed casting of different grades of steel and the technology of predicting and controlling the W-shaped solidification to further improve the applicability and accuracy of the model. The model has been developed and successfully applied in several steel plants, and the result shows that the proposed model can improve the surface and internal quality of cast slabs effectively, such as cracks and segregation.

     

  • loading
  • [1]
    吳國榮, 謝鑫, 陳剛. 高強汽車梁板鋼寬厚板坯角橫裂紋控制. 第三屆釩鈦微合金化高強鋼開發應用技術暨第四屆釩產業先進技術交流會論文集. 重慶, 2017: 93

    Wu G R, Xie X, Chen G. Slab corner crack control of high strength automobile frame steel // The 3rd Vanadium and Titanium Microalloyed High Strength Steel Development and Application Technology and the 4th Vanadium Industry Advanced Technology Exchange Conference. Chongqing, 2017: 93
    [2]
    丁占元, 馮長寶. 控制厚板連鑄板坯中心偏析的實踐. 連鑄, 2018, 43(2):32

    Ding Z Y, Feng C B. Practice in controlling centerline segregation of continuous casting slab for heavy plate. Continuous Cast, 2018, 43(2): 32
    [3]
    渠松濤. 連鑄二冷工藝優化與鑄坯角部裂紋控制研究. 山西冶金, 2021, 44(1):131

    Qu S T. Study on optimization of continuous casting secondary cooling process and crack control at corner of the billet. Shanxi Metall, 2021, 44(1): 131
    [4]
    周丹, 張守偉, 鞏彥坤, 等. 中厚板角部橫裂紋缺陷分析. 河南冶金, 2020, 28(4):38 doi: 10.3969/j.issn.1006-3129.2020.04.013

    Zhou D, Zhang S W, Gong Y K, et al. Analysis on transverse corner crack of medium plate. Henan Metall, 2020, 28(4): 38 doi: 10.3969/j.issn.1006-3129.2020.04.013
    [5]
    趙迪, 程業, 李博, 等. 降低含鋁鋼表面橫裂紋的工藝實踐. 連鑄, 2020, 45(2):14

    Zhao D, Cheng Y, Li B, et al. Practice process of reducing surface transverse crack of aluminum containing steel. Continuous Cast, 2020, 45(2): 14
    [6]
    路殿華, 王振鵬, 張慧. 微合金化鋼連鑄坯邊角部無缺陷生產技術開發. 連鑄, 2020, 45(5):66

    Lu D H, Wang Z P, Zhang H. Development of production technology of micro-alloyed steel continuous casting billet without corner defects. Continuous Cast, 2020, 45(5): 66
    [7]
    宋景欣, 張發斌. 基于熱流密度分布模型的連鑄倒角結晶器溫度分布研究. 煉鋼, 2019, 35(6):35

    Song J X, Zhang F B. Study of temperature distribution of continuous casting chamfer mold based on heat flux distribution model. Steelmaking, 2019, 35(6): 35
    [8]
    楊曉山, 張鵬. 倒角結晶器技術開發及應用. 連鑄, 2018, 43(2):26

    Yang X S, Zhang P. Development and application of chamfered mold technology. Continuous Cast, 2018, 43(2): 26
    [9]
    Yin H B. Solidifying shell waviness during continuous casting of AHSS slabs. IOP Conf Ser:Mater Sci Eng, 2019, 529(1): 012073 doi: 10.1088/1757-899X/529/1/012073
    [10]
    Yang L, Li Y, Xue Z L, et al. Effect of different thermal schedules on ductility of microalloyed steel slabs during continuous casting. Metals, 2019, 9(1): 37 doi: 10.3390/met9010037
    [11]
    Yang X G, Zhang L F, Lai C B, et al. A method to control the transverse corner cracks on a continuous casting slab by combining microstructure analysis with numerical simulation of the slab temperature field. Steel Res Int, 2018, 89(5): 1700480 doi: 10.1002/srin.201700480
    [12]
    汪勇, 李光強, 劉玉龍, 等. Nb微合金化取向硅鋼常化板中析出物特征及其對組織和織構的影響. 材料導報, http://kns.cnki.net/kcms/detail/50.1078.TB.20210809.1551.016.html

    Wang Y, Li G Q, Liu Y L, et al. Effect of Nb content on precipitates, microstructure and texture of normalized bands of grain oriented silicon steel. Materials Reports, http://kns.cnki.net/kcms/detail/50.1078.TB.20210809.1551.016.html
    [13]
    袁航, 楊樹峰, 王田田, 等. 亞包晶微合金鋼連鑄板坯角部橫裂紋研究進展. 中國冶金, 2020, 30(10):1

    Yuan H, Yang S F, Wang T T, et al. Research progress of transverse corner crack on hypo-peritectic micro-alloyed steel slab. China Metall, 2020, 30(10): 1
    [14]
    張澤峰, 邢立東, 王敏, 等. 低碳微合金鋼中TiN的析出行為分析. 連鑄, 2020, 45(5):38

    Zhang Z F, Xing L D, Wang M, et al. Analysis of precipitation behavior of TiN in low carbon micro-alloyed steel. Continuous Cast, 2020, 45(5): 38
    [15]
    徐松乾, 趙海平. 固溶處理對S30432奧氏體耐熱鋼中含鈮析出相的影響. 鋼鐵, 2018, 53(5):86

    Xu S Q, Zhao H P. Influence of solution treatment on precipitate bearing Nb in S30432 austenitic heat resistant steel. Iron Steel, 2018, 53(5): 86
    [16]
    Du C, Zhang J, Wen J, et al. Hot ductility trough elimination through single cycle of intense cooling and reheating for microalloyed steel casting. Ironmaking Steelmaking, 2016, 43(5): 331 doi: 10.1179/1743281215Y.0000000044
    [17]
    Pascon F, Habraken A M. Finite element study of the effect of some local defects on the risk of transverse cracking in continuous casting of steel slabs. Comput Methods Appl Mech Eng, 2007, 196(21-24): 2285 doi: 10.1016/j.cma.2006.07.017
    [18]
    Ma F J, Wen G H, Tang P, et al. Causes of transverse corner cracks in microalloyed steel in vertical bending continuous slab casters. Ironmaking Steelmaking, 2010, 37(1): 73 doi: 10.1179/030192309X12506804200465
    [19]
    郭戈, 喬俊飛. 連鑄過程控制理論與技術. 北京: 冶金工業出版社, 2003

    Guo G, Qiao J F. Continuous Casting Process Control Theory and Technology. Beijing: Metallurgical Industry Press, 2003
    [20]
    孫一康, 王京. 冶金過程自動化基礎: 冶金過程自動化技術叢書. 北京: 冶金工業出版社, 2006

    Sun Y K, Wang J. Fundamentals of Metallurgical Process Automation. Beijing: Metallurgical Industry Press, 2006
    [21]
    Jiang G S, Boyle J R. Computer dynamic control of the secondary cooling during continuous casting // Conference on Continuous Casting of Steel in Developing Countries. Beijing, 1993: 567
    [22]
    Laitinen E, Neittaanm?ki P. On numerical simulation of the continuous casting process. J Eng Math, 1988, 22(4): 335 doi: 10.1007/BF00058513
    [23]
    Okuno K, Naruwa H, Kuribayashi T, et al. Dynamic spray cooling control system for continuous casting. Iron Steel Eng, 1987, 64(4): 34
    [24]
    韓延申, 張江山, 鄒雷雷, 等. 噴嘴噴淋距離對連鑄小方坯二冷均勻性的影響. 工程科學學報, 2020, 42(6):739

    Han Y S, Zhang J S, Zou L L, et al. Effect of nozzle spray distance on the secondary cooling uniformity of continuous casting billet. Chin J Eng, 2020, 42(6): 739
    [25]
    朱苗勇, 林啟勇. 連鑄坯的輕壓下技術. 鞍鋼技術, 2004(1):1 doi: 10.3969/j.issn.1006-4613.2004.01.001

    Zhu M Y, Lin Q Y. Light reduction technology for continuous casting slab. Angang Technol, 2004(1): 1 doi: 10.3969/j.issn.1006-4613.2004.01.001
    [26]
    Brent A D, Voller V R, Reid K J. Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal. Numer Heat Transfer, 1988, 13(3): 297 doi: 10.1080/10407788808913615
    [27]
    Louhenkilpi S, Laitinen E, Nieminen R. Real-time simulation of heat transfer in continuous casting. Metall Mater Trans B, 1993, 24(4): 685 doi: 10.1007/BF02673184
    [28]
    陶文銓. 數值傳熱學. 2版. 西安: 西安交通大學出版社, 2001

    Tao W Q. Numerical Heat Transfer. 2nd Ed. Xi'an: Xi'an Jiaotong University Press, 2001
    [29]
    宋維錫. 金屬學. 北京: 冶金工業出版社, 1989

    Song W X. Metalology. Beijing: Metallurgical Industry Press, 1989
    [30]
    陳雷. 連續鑄鋼. 北京: 冶金工業出版社, 1994

    Chen L. Continuous Cast Steel. Beijing: Metallurgical Industry Press, 1994
    [31]
    Clyne T W, Kurz W. Solute redistribution during solidification with rapid solid state diffusion. Metall Trans A, 1981, 12(6): 965 doi: 10.1007/BF02643477
    [32]
    Yin Y B, Zhang J M, Ma H T, et al. Large eddy simulation of transient flow, particle transport, and entrapment in slab mold with double-ruler electromagnetic braking. Steel Res Int, 2021, 92(5): 2000582 doi: 10.1002/srin.202000582
    [33]
    Launder B E, Spalding D B. The numerical computation of turbulent flows. Comput Methods Appl Mech Eng, 1974, 3(2): 269 doi: 10.1016/0045-7825(74)90029-2
    [34]
    張先棹. 冶金傳輸原理. 北京: 冶金工業出版社, 1991

    Zhang X Z. Principles of Metallurgical Transmission. Beijing: Metallurgical Industry Press, 1991
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(22)  / Tables(3)

    Article views (1501) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频