Citation: | MA Hai-tao, ZHANG Jiong-ming, YIN Yan-bin. Influence of the soft reduction process on the sensitivity of the inner crack in heavy rail steel bloom[J]. Chinese Journal of Engineering, 2021, 43(12): 1679-1688. doi: 10.13374/j.issn2095-9389.2021.09.29.003 |
[1] |
岑耀東, 陳林, 董瑞, 等. 自回火對重軌鋼疲勞裂紋擴展行為的影響. 材料導報, 2021, 35(12):12136 doi: 10.11896/cldb.20050123
Cen Y D, Chen L, Dong R, et al. Effect of self-tempering on fatigue crack growth of heavy rail steel. Mater Rep, 2021, 35(12): 12136 doi: 10.11896/cldb.20050123
|
[2] |
李紅光, 祭程, 姜東濱, 等. 重載鋼軌鋼連鑄大方坯半宏觀偏析形成機制與控制. 鋼鐵, 2021, 56(6):59
Li H G, Ji C, Jiang D B, et al. Formation mechanism and control of semi-micro-segregation in rail steel bloom. Iron Steel, 2021, 56(6): 59
|
[3] |
王亞棟, 張立峰, 張海杰, 等. 小方坯齒輪鋼連鑄過程中的宏觀偏析模擬. 工程科學學報, 2021, 43(4):561
Wang Y D, Zhang L F, Zhang H J, et al. Simulation of the macrosegregation in the gear steel billet continuous casting process. Chin J Eng, 2021, 43(4): 561
|
[4] |
Sun H, Li L, Cheng X, et al. Reduction in macrosegregation on 380 mm× 490 mm bloom caster equipped combination M+ F-EMS by optimising casting speed. Ironmaking Steelmaking, 2015, 42(6): 439 doi: 10.1179/1743281214Y.0000000247
|
[5] |
Ayata K, Mori H, Taniguchi K, et al. Low superheat teeming with electromagnetic stirring. ISIJ Int, 1995, 35(6): 680 doi: 10.2355/isijinternational.35.680
|
[6] |
Sun H, Li L. Application of swirling flow nozzle and investigation of superheat dissipation casting for bloom continuous casing. Ironmaking Steelmaking, 2016, 43(3): 228 doi: 10.1179/1743281215Y.0000000039
|
[7] |
Liu H P, Xu M G, Qiu S T, et al. Numerical simulation of fluid flow in a round bloom mold with in-mold rotary electromagnetic stirring. Metall Mater Trans B, 2012, 43(6): 1657 doi: 10.1007/s11663-012-9737-0
|
[8] |
Ren B Z, Chen D F, Wang H D, et al. Numerical simulation of fluid flow and solidification in bloom continuous casting mould with electromagnetic stirring. Ironmaking Steelmaking, 2015, 42(6): 401 doi: 10.1179/1743281214Y.0000000240
|
[9] |
Wang S Q, de Toledo G A, V?limaa K, et al. Magnetohydrodynamic phenomena, fluid control and computational modeling in the continuous casting of billet and bloom. ISIJ Int, 2014, 54(10): 2273 doi: 10.2355/isijinternational.54.2273
|
[10] |
李少翔, 王璞, 蘭鵬, 等. 圓坯凝固末端電磁攪拌作用下的流動與傳熱行為. 工程科學學報, 2019, 41(6):748
Li S X, Wang P, Lan P, et al. Melt flow and heat transfer at the crater end of round billet continuous casting using final electromagnetic stirring. Chin J Eng, 2019, 41(6): 748
|
[11] |
Domitner J, Wu M H, Kharicha A, et al. Modeling the effects of strand surface bulging and mechanical softreduction on the macrosegregation formation in steel continuous casting. Metall Mater Trans A, 2014, 45(3): 1415 doi: 10.1007/s11661-013-2060-9
|
[12] |
Ludlow V, Normanton A, Anderson A, et al. Strategy to minimise central segregation in high carbon steel grades during billet casting. Ironmaking Steelmaking, 2005, 32(1): 68 doi: 10.1179/174328105X23978
|
[13] |
Zhao J P, Liu L, Wang W W, et al. Effects of heavy reduction technology on internal quality of continuous casting bloom. Ironmaking Steelmaking, 2019, 46(3): 227 doi: 10.1080/03019233.2017.1366090
|
[14] |
Ji C, Wu C H, Zhu M Y. Thermo-mechanical behavior of the continuous casting bloom in the heavy reduction process. JOM, 2016, 68(12): 3107 doi: 10.1007/s11837-016-2041-8
|
[15] |
Li G S, Yu W, Cai Q W. Investigation of reduction pretreatment process for continuous casting. J Mater Process Technol, 2016, 227: 41 doi: 10.1016/j.jmatprotec.2015.08.005
|
[16] |
Ji C, Luo S, Zhu M Y. Analysis and application of soft reduction amount for bloom continuous casting process. ISIJ Int, 2014, 54(3): 504 doi: 10.2355/isijinternational.54.504
|
[17] |
Yu C H, Suzuki M, Shibata H, et al. Simulation of crack formation on solidifying steel shell in continuous casting mold. ISIJ Int, 1996, 36(Suppl): S159 doi: 10.2355/isijinternational.36.Suppl_S159
|
[18] |
Won Y M, Kim K H, Yeo T J, et al. Effect of cooling rate on ZST, LIT and ZDT of carbon steels near melting point. ISIJ Int, 1998, 38(10): 1093 doi: 10.2355/isijinternational.38.1093
|
[19] |
Seol D J, Won Y M, Oh K H, et al. Mechanical behavior of carbon steels in the temperature range of mushy zone. ISIJ Int, 2000, 40(4): 356 doi: 10.2355/isijinternational.40.356
|
[20] |
Cornelissen M C M. Mathematical model for soldification of multicomponent alloys. Ironmaking Steelmaking, 1986, 13(4): 204
|
[21] |
Yamanaka A, Nakajima K, Okamura K. Critical strain for internal crack formation in continuous casting. Ironmaking Steelmaking, 1995, 22(6): 508
|
[22] |
Kobayashi S. Relationships of fraction solid with zero ductility and zero strength temperatures during solidification. Testu-to-Hagane, 1987, 73: S896
|
[23] |
Nakagawa T, Umeda T, Murata J, et al. Deformation behavior during solidification of steels. ISIJ Int, 1995, 35(6): 723 doi: 10.2355/isijinternational.35.723
|
[24] |
Kim K, Han H N, Yeo T, et al. Analysis of surface and internal cracks in continuously cast beam blank. Ironmaking Steelmaking, 1997, 24(3): 249
|
[25] |
王一成, 胡鵬. 連鑄方坯輕壓下內裂紋形成研究. 煉鋼, 2015, 31(2):49
Wang Y C, Hu P. Research on formation of internal cracks by soft reduction in billet continuous casting. Steelmaking, 2015, 31(2): 49
|
[26] |
宋瀟. 大方坯連鑄輕壓下過程熱力耦合數值模擬研究[學位論文]. 武漢: 武漢科技大學, 2018
Song X. Coupled Thermo-Mechanical Model for Soft Reduction for Continuous Casting Bloom [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2018
|
[27] |
Li X B, Ding H, Tang Z Y, et al. Formation of internal cracks during soft reduction in rectangular bloom continuous casting. Int J Miner Metall Mater, 2012, 19(1): 21 doi: 10.1007/s12613-012-0510-9
|
[28] |
Dong Q P, Zhang J M, Wang B, et al. Shrinkage porosity and its alleviation by heavy reduction in continuously cast strand. J Mater Process Technol, 2016, 238: 81 doi: 10.1016/j.jmatprotec.2016.07.007
|
[29] |
趙軍普, 劉瀏, 范建文, 等. 輕壓下技術及其在連鑄中的研究與應用. 材料導報, 2016, 30(15):57
Zhao J P, Liu L, Fan J W, et al. Study and application of soft reduction technology in continuous casting. Mater Rev, 2016, 30(15): 57
|
[30] |
杜一哲, 李麗, 汪勤政, 等. 特厚板坯單輥重壓下鑄坯溫度與應力的分析. 連鑄, 2021, 46(1):47
Du Y Z, Li L, Wang Q Z, et al. Analysis of slab temperature and stress under single roll heavy pressing for extra thick slab. Continuous Cast, 2021, 46(1): 47
|
[31] |
Kelly J E, Michalek K P, O’connor T G, et al. Initial development of thermal and stress fields in continuously cast steel billets. Metall Trans A, 1988, 19(10): 2589 doi: 10.1007/BF02645486
|
[32] |
胡文廣, 祭程, 朱苗勇. 重軌鋼連鑄大方坯凝固末端壓下過程的數值模擬. 連鑄, 2021, 46(4):2
Hu W G, Ji C, Zhu M Y. Numerical simulation of continuous casting bloom solidification end reduction process for heavy-haul railway rails. Continuous Cast, 2021, 46(4): 2
|
[33] |
Clyne T W, Wolf M, Kurz W. The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting. Metall Trans B, 1982, 13(2): 259 doi: 10.1007/BF02664583
|
[34] |
Li C S, Thomas B G. Thermomechanical finite-element model of shell behavior in continuous casting of steel. Metall Mater Trans B, 2004, 35(6): 1151 doi: 10.1007/s11663-004-0071-z
|
[35] |
蔡兆鎮, 祭程, 王衛領, 等. 寬厚板坯連鑄結晶器內凝固坯殼裂紋敏感性研究 // 2012年微合金鋼連鑄裂紋控制技術研討會論文集. 九江, 2012: 22
Cai Z Z, Ji C, Wang W L, et al. Study on crack sensitivity of solidified billet shell in thick and wide slab continuous casting mould // 2012 Symposium on Crack Control Technology for Continuous Casting of Micro alloyed Steel. Jiujiang, 2012: 22
|
[36] |
Hu P, Zhang H, Zhang X Z, et al. Application of a corner chamfer to steel billets to reduce risk of internal cracking during casting with soft reduction. ISIJ Int, 2014, 54(10): 2283 doi: 10.2355/isijinternational.54.2283
|
[37] |
Won Y M, Yeo T J, Seol D J, et al. A new criterion for internal crack formation in continuously cast steels. Metall Mater Trans B, 2000, 31(4): 779 doi: 10.1007/s11663-000-0115-y
|
[38] |
蔡開科. 連鑄坯質量控制. 北京: 冶金工業出版社, 2010
Cai K K. The Quality Control of the Continuous Casting Billet. Beijing: Metallurgical Industry Press, 2010
|