<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
LIU Qing, SHAO Xin, YANG Jian-ping, ZHANG Jiang-shan. Multiscale modeling and collaborative manufacturing for steelmaking plants[J]. Chinese Journal of Engineering, 2021, 43(12): 1698-1712. doi: 10.13374/j.issn2095-9389.2021.09.27.010
Citation: LIU Qing, SHAO Xin, YANG Jian-ping, ZHANG Jiang-shan. Multiscale modeling and collaborative manufacturing for steelmaking plants[J]. Chinese Journal of Engineering, 2021, 43(12): 1698-1712. doi: 10.13374/j.issn2095-9389.2021.09.27.010

Multiscale modeling and collaborative manufacturing for steelmaking plants

doi: 10.13374/j.issn2095-9389.2021.09.27.010
More Information
  • Corresponding author: E-mail: qliu@ustb.edu.cn
  • Received Date: 2021-09-27
    Available Online: 2021-11-02
  • Publish Date: 2021-12-24
  • With the recent, rapid developments of metallurgical theory and intelligent steelmaking technology, the intelligent upgrading of iron and steel enterprises has attracted increased attention and become a topic of discussion in the steel industry. Collaborative manufacturing is an important feature of intelligent manufacturing in steel enterprises, and it plays an important role in improving the production efficiency and reducing the carbon emissions of iron and steel enterprises. This study elaborated the structure and the contents of multiscale modeling and the collaborative manufacturing of steelmaking plants in detail. The collaborative control of steelmaking plants was studied from the scales of individual processes, workshop sections, and the operation of steelmaking plants. Systematic modeling studies had been conducted from the process control system of processes/devices to the manufacturing execution system (MES). The process control models, including the converter steelmaking process, secondary metallurgy process, and continuous casting process, and mass flow operation optimization models with the production planning and scheduling model as the core were established. In addition, the high-efficiency operation of multi processes/devices was realized through the dynamic coordination of process control and production planning and scheduling in the steelmaking plants. The data interface between process control models, production planning and scheduling models, and MES had been developed to realize the comprehensive integration of MES, production process control, process operation control, production planning, and scheduling system. It had formed the steelmaking-continuous casting process integrated manufacturing technology supported by the precise process control co-driven by mechanism and data models, collaborative process operation, and production planning and scheduling based on “rules + algorithms.” Through multilevel vertical coordination and multiprocess horizontal coordination, the coordinated operation and the control of steelmaking plants were realized. The study results demonstrated a beneficial exploration and the practice of intelligent manufacturing in the steelmaking-continuous casting process, which had strong reference value for intelligent manufacturing enterprises in the process industry, and had a demonstration effect for the green and the intelligent development of the metallurgical industry. After the application, the collaborative manufacturing level of the steelmaking plant had been considerably improved, and significant economic and social benefits had been achieved.

     

  • loading
  • [1]
    劉青, 田乃媛, 殷瑞鈺. 煉鋼廠系統的運行原則與調控策略. 過程工程學報, 2003, 3(2):171 doi: 10.3321/j.issn:1009-606X.2003.02.015

    Liu Q, Tian N Y, Yin R Y. Operation principle and control strategy for steelmaking workshop system. Chin J Process Eng, 2003, 3(2): 171 doi: 10.3321/j.issn:1009-606X.2003.02.015
    [2]
    Wang Z, Chang J, Ju Q P, et al. Prediction model of end-point manganese content for BOF steelmaking process. ISIJ Int, 2012, 52(9): 1585 doi: 10.2355/isijinternational.52.1585
    [3]
    林文輝, 焦樹強, 孫建坤, 等. 轉爐吹煉后期碳含量預報的改進指數模型. 工程科學學報, 2020, 42(7):854

    Lin W H, Jiao S Q, Sun J K, et al. Modified exponential model for carbon prediction in the end blowing stage of basic oxygen furnace converter. Chin J Eng, 2020, 42(7): 854
    [4]
    Wang Z, Xie F M, Wang B, et al. The control and prediction of end-point phosphorus content during BOF steelmaking process. Steel Res Int, 2014, 85(4): 599 doi: 10.1002/srin.201300194
    [5]
    李南, 林文輝, 曹玲玲, 等. 基于熔池混勻度的轉爐煙氣分析定碳模型. 工程科學學報, 2018, 40(10):1244

    Li N, Lin W H, Cao L L, et al. Carbon prediction model for basic oxygen furnace off-gas analysis based on bath mixing degree. Chin J Eng, 2018, 40(10): 1244
    [6]
    張壯, 曹玲玲, 林文輝, 等. 基于IPSO?RELM轉爐冶煉終點錳含量預測模型. 工程科學學報, 2019, 41(8):1052

    Zhang Z, Cao L L, Lin W H, et al. Improved prediction model for BOF end-point manganese content based on IPSO?RELM method. Chin J Eng, 2019, 41(8): 1052
    [7]
    付國慶, 劉青, 汪宙, 等. LF精煉終點鋼水溫度灰箱預報模型. 北京科技大學學報, 2013, 35(7):948

    Fu G Q, Liu Q, Wang Z, et al. Grey box model for predicting the LF end-point temperature of molten steel. J Univ Sci Technol Beijing, 2013, 35(7): 948
    [8]
    Xin Z C, Zhang J S, Zhang J G, et al. Mathematical modelling and plant trial on slagging regime in a ladle furnace for high-efficiency desulphurization. Ironmaking Steelmaking, 2021: 1
    [9]
    Yang J P, Zhang J S, Guo W D, et al. End-point temperature preset of molten steel in the final refining unit based on an integration of deep neural network and multi-process operation simulation. ISIJ Int, 2021, 61(7): 2100 doi: 10.2355/isijinternational.ISIJINT-2020-540
    [10]
    Dou K, Yang Z G, Liu Q, et al. Influence of secondary cooling mode on solidification structure and macro-segregation behavior for high-carbon continuous casting bloom. High Temp Mater Process, 2017, 36(7): 741 doi: 10.1515/htmp-2016-0022
    [11]
    楊振國. GCr15軸承鋼連鑄坯宏觀碳偏析的影響因素及控制研究[學位論文]. 北京: 北京科技大學, 2014

    Yang Z G. Research on the Influencing Factors and Control of Carbon Macrosegregation of Blooms in Continuous Casting of GCr15 Bearing Steel [Dissertation]. Beijing: University of Science and Technology Beijing, 2014
    [12]
    陳恒志. 連鑄坯典型缺陷預測研究[學位論文]. 北京: 北京科技大學, 2017

    Chen H Z. Research on Prediction of Typical Defects of Continuous Casting Bloom [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
    [13]
    Han Y S, Yan W, Zhang J S, et al. Optimization of thermal soft reduction on continuous-casting billet. ISIJ Int, 2020, 60(1): 106 doi: 10.2355/isijinternational.ISIJINT-2019-409
    [14]
    Li G H, Wang B, Liu Q, et al. A process model for BOF process based on bath mixing degree. Int J Miner Metall Mater, 2010, 17(6): 715 doi: 10.1007/s12613-010-0379-4
    [15]
    汪宙. 轉爐冶煉中高碳鋼過程及終點控制研究[學位論文]. 北京: 北京科技大學, 2016

    Wang Z. Study on the Control of Steelmaking Process and Blowing End-Point for Medium-High Carbon Steel Melting by Converter [Dissertation]. Beijing: University of Science and Technology Beijing, 2016
    [16]
    Han Y S, Wang X Y, Zhang J S, et al. Comparison of transverse uniform and non-uniform secondary cooling strategies on heat transfer and solidification structure of continuous-casting billet. Metals, 2019, 9(5): 543 doi: 10.3390/met9050543
    [17]
    竇志超, 張曉峰, 尹佳, 等. 基于有效拉速和有效過熱度的連鑄二冷控制模型. 北京科技大學學報, 2011, 33(11):1349

    Dou Z C, Zhang X F, Yin J, et al. Secondary cooling control model based on effective-speed and effective-superheat in continuous casting. J Univ Sci Technol Beijing, 2011, 33(11): 1349
    [18]
    Dou K, Liu Q. A new cooling strategy in curved continuous casting process of vanadium micro-alloyed YQ450NQR1 steel bloom combining experimental and modeling approach. Metall Mater Trans A, 2020, 51(8): 3945 doi: 10.1007/s11661-020-05819-9
    [19]
    劉青, 韓延申, 張江山. 一種改善包晶鋼連鑄中厚板坯中心偏析與表面裂紋的方法: 中國專利, CN111774546B. 2021-03-30

    Liu Q, Han Y S, Zhang J S. Method for Improving Center Segregation and Surface Cracks of Peritectic Steel Continuous Casting Medium-Thickness Slab: China Patent, CN111774546B. 2021-03-30
    [20]
    竇坤. 釩微合金化鋼連鑄方坯凝固特性與組織性能研究[學位論文]. 北京: 北京科技大學, 2017

    Dou K. Research on Solidification Characteristics and Microstructure Properties for Vanadium Micro-Alloyed Steel Bloom in Continuous Casting Process [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
    [21]
    陳尚. 連鑄板坯二冷優化與典型缺陷研究[學位論文]. 北京: 北京科技大學, 2018

    Chen S. Research on Secondary Cooling Optimization and Typical Defects of Continuous Casting Slabs [Dissertation]. Beijing: University of Science and Technology Beijing, 2018
    [22]
    Zou L L, Zhang J S, Liu Q, et al. Prediction of central carbon segregation in continuous casting billet using A regularized extreme learning machine model. Metals, 2019, 9(12): 1312 doi: 10.3390/met9121312
    [23]
    殷瑞鈺. 關于智能化鋼廠的討論——從物理系統一側出發討論鋼廠智能化. 鋼鐵, 2017, 52(6):1

    Yin R Y. A discussion on “smart” steel plant—view from physical system side. Iron Steel, 2017, 52(6): 1
    [24]
    劉青, 王剛, 王彬, 等. 基于產品結構的煉鋼?連鑄區段產能解析. 重慶大學學報, 2014, 37(1):75 doi: 10.11835/j.issn.1000-582X.2014.01.012

    Liu Q, Wang G, Wang B, et al. Capacity analysis of steelmaking-continuous casting section based on different products mixes. J Chongqing Univ, 2014, 37(1): 75 doi: 10.11835/j.issn.1000-582X.2014.01.012
    [25]
    穆衍清. 轉爐特殊鋼廠煉鋼−連鑄生產過程運行優化研究[學位論文]. 北京: 北京科技大學, 2011

    Mu Y Q. Research on Operation Optimization for Productive Process of Steelmaking-Continuous Casting in BOF Special Steel Plants [Dissertation]. Beijing: University of Science and Technology Beijing, 2011
    [26]
    劉青, 黃星武, 富平原. 煉鋼廠系統生產模式優化. 北京科技大學學報, 2005, 27(6):736 doi: 10.3321/j.issn:1001-053X.2005.06.024

    Liu Q, Huang X W, Fu P Y. Production mode optimization of a steelmaking workshop system. J Univ Sci Technol Beijing, 2005, 27(6): 736 doi: 10.3321/j.issn:1001-053X.2005.06.024
    [27]
    楊建平, 張江山, 劉青. 煉鋼?連鑄區段3種典型工序界面技術研究進展. 工程科學學報, 2020, 42(12):1542

    Yang J P, Zhang J S, Liu Q. Research progress on three kinds of classic process interface technologies in steelmaking-continuous casting section. Chin J Eng, 2020, 42(12): 1542
    [28]
    王彬, 王闖, 王寶, 等. 煉鋼-連鑄過程生產計劃與調度問題綜合優化研究. 武漢科技大學學報, 2014, 37(3):161

    Wang B, Wang C, Wang B, et al. Comprehensive optimization of production planning and scheduling for steelmaking-continuous casting process. J Wuhan Univ Sci Technol, 2014, 37(3): 161
    [29]
    王闖, 劉青, 李慶益, 等. 基于改進單親遺傳算法的煉鋼最優爐次計劃模型. 控制理論與應用, 2013, 30(6):734

    Wang C, Liu Q, Li Q Y, et al. Optimal charge plan model for steelmaking based on modified partheno-genetic algorithm. Control Theory Appl, 2013, 30(6): 734
    [30]
    鄒草云. 長材型特殊鋼廠煉鋼−連鑄過程生產計劃優化研究[學位論文]. 北京: 北京科技大學, 2016

    Zou C Y. Research on Planning Optimization for Steelmaking-Continuous Casting Process in Special Steel Plants of Long Products [Dissertation]. Beijing: University of Science and Technology Beijing, 2016
    [31]
    劉倩. 基于規則的煉鋼-連鑄過程生產調度遺傳算法模型[學位論文]. 北京: 北京科技大學, 2020

    Liu Q. Rule-Based Genetic Algorithm Model of Production Scheduling for Steelmaking-Continuous Casting Process [Dissertation]. Beijing: University of Science and Technology Beijing, 2020
    [32]
    劉青, 劉倩, 楊建平, 等. 煉鋼?連鑄生產調度的研究進展. 工程科學學報, 2020, 42(2):144

    Liu Q, Liu Q, Yang J P, et al. Progress of research on steelmaking-continuous casting production scheduling. Chin J Eng, 2020, 42(2): 144
    [33]
    劉倩, 楊建平, 王柏琳, 等. 基于“爐?機對應”的煉鋼?連鑄生產調度問題遺傳優化模型. 工程科學學報, 2020, 42(5):645

    Liu Q, Yang J P, Wang B L, et al. Genetic optimization model of steelmaking-continuous casting production scheduling based on the “furnace-caster coordinating” strategy. Chin J Eng, 2020, 42(5): 645
    [34]
    邵鑫, 楊建平, 王柏琳, 等. 煉鋼?連鑄區段多工序運行協同控制. 鋼鐵, 2021, 56(8):101

    Shao X, Yang J P, Wang B L, et al. Cooperative control of multi-process operation in steelmaking-continuous casting section. Iron Steel, 2021, 56(8): 101
    [35]
    Yang J P, Liu Q, Guo W D, et al. Quantitative evaluation of multi-process collaborative operation in steelmaking-continuous casting sections. Int J Miner Metall Mater, 2021, 28(8): 1353 doi: 10.1007/s12613-020-2227-5
    [36]
    穆衍清, 尹佳, 謝飛鳴, 等. 特殊鋼廠爐機匹配研究. 北京科技大學學報, 2013, 35(1):126

    Mu Y Q, Yin J, Xie F M, et al. Research on matching between furnaces and casters in special steel plants. J Univ Sci Technol Beijing, 2013, 35(1): 126
    [37]
    Yang J P, Wang B L, Liu Q, et al. Scheduling model for the practical steelmaking-continuous casting production and heuristic algorithm based on the optimization of “furnace-caster matching” mode. ISIJ Int, 2020, 60(6): 1213 doi: 10.2355/isijinternational.ISIJINT-2019-423
    [38]
    徐兆俊, 鄭忠, 高小強. 煉鋼連鑄生產調度的優先級策略混合遺傳算法. 控制與決策, 2016, 31(8):1394

    Xu Z J, Zheng Z, Gao X Q. HGA combined with priority strategy for production planning of steelmaking-continuous casting. Control Decis, 2016, 31(8): 1394
    [39]
    劉光航, 李鐵克. 煉鋼?連鑄生產調度模型及啟發式算法. 系統工程, 2002, 20(6):44 doi: 10.3969/j.issn.1001-4098.2002.06.009

    Liu G H, Li T K. A steelmaking-continuous casting production scheduling model and its heuristic algorithm. Syst Eng, 2002, 20(6): 44 doi: 10.3969/j.issn.1001-4098.2002.06.009
    [40]
    尹佳. 中小轉爐流程LF的合理配置及其對生產運行的影響研究[學位論文]. 北京: 北京科技大學, 2007

    Yin J. The Rational Arrangement of Ladle Furnace of the Medium and Small Sized Converters Process and its Influence to Production [Dissertation]. Beijing: University of Science and Technology Beijing, 2007
    [41]
    劉青, 趙平, 吳曉東, 等. 鋼包的運行控制. 北京科技大學學報, 2005, 27(2):235 doi: 10.3321/j.issn:1001-053X.2005.02.025

    Liu Q, Zhao P, Wu X D, et al. Control strategy for ladle running. J Univ Sci Technol Beijing, 2005, 27(2): 235 doi: 10.3321/j.issn:1001-053X.2005.02.025
    [42]
    洪宇杰, 楊建平, 劉青, 等. 離線烘烤鋼包數量計算模型建立. 鋼鐵研究學報, 2021, 33(3):209

    Hong Y J, Yang J P, Liu Q, et al. Establishment of calculation model for number of offline baked steel ladle. J Iron Steel Res, 2021, 33(3): 209
    [43]
    余相灼. 煉鋼廠鋼包運行優化與仿真模擬研究[學位論文]. 北京: 北京科技大學, 2019

    Yu X Z. Research on Optimization and Simulation of Ladle Operation in Steelmaking Plant [Dissertation]. Beijing: University of Science and Technology Beijing, 2019
    [44]
    Torre?o A, Sapena ó, Onaindia E. FMAP: A platform for the development of distributed multi-agent planning systems. Knowl Based Syst, 2018, 145: 166 doi: 10.1016/j.knosys.2018.01.013
    [45]
    Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Autom Control, 2005, 50(5): 655 doi: 10.1109/TAC.2005.846556
    [46]
    王彬. 長材型特殊鋼廠煉鋼−連鑄過程生產計劃優化與協同調度[學位論文]. 北京: 北京科技大學, 2015

    Wang B. Optimal Planning and Collaborative Scheduling on Steelmaking-Continuous Casting Process in Special Steel Plantsof Long Products [Dissertation]. Beijing: University of Science and Technology Beijing, 2015
    [47]
    劉青, 王彬, 汪宙, 等. 高品質鋼煉鋼?連鑄過程的精益制造. 連鑄, 2016, 41(3):1

    Liu Q, Wang B, Wang Z, et al. Fine manufacturing for steelmaking-continuous casting process of high quality steel. Continuous Cast, 2016, 41(3): 1
    [48]
    Liu Q, Wang B, Wang Z, et al. Fine production in steelmaking plants. Mater Today Proc, 2015, 2: S348 doi: 10.1016/j.matpr.2015.05.049
  • 加載中

Catalog

    通訊作者: 陳斌, bchen63@163.com
    • 1. 

      沈陽化工大學材料科學與工程學院 沈陽 110142

    1. 本站搜索
    2. 百度學術搜索
    3. 萬方數據庫搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article views (1627) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    久色视频