Citation: | GUO Zhan-cheng, GAO Jin-tao, WANG Zhe, GUO Lei, WANG Ming-yong. Supergravity metallurgy: principles, experimental methods, techniques, and applications[J]. Chinese Journal of Engineering, 2021, 43(12): 1592-1617. doi: 10.13374/j.issn2095-9389.2021.09.21.002 |
[1] |
沈巧珍. 杜建明. 冶金傳輸原理. 北京: 冶金工業出版社, 2006
Shen Q Z, Du J M. Metallurgy Transport Theory. Beijing: Metallurgical Industry Press, 2006
|
[2] |
宋志敏, 張虹. 我國軸承鋼生產及質量現狀. 鋼鐵研究學報, 2000, 12(4):59 doi: 10.3321/j.issn:1001-0963.2000.04.014
Song Z M, Zhang H. Present situation of producing and quality for bearing steel in China. J Iron Steel Res, 2000, 12(4): 59 doi: 10.3321/j.issn:1001-0963.2000.04.014
|
[3] |
趙萬祥, 趙乃勤, 郭新權. 新型功能材料泡沫鋁的研究進展. 金屬熱處理, 2004, 29(6):7 doi: 10.3969/j.issn.0254-6051.2004.06.003
Zhao W X, Zhao N Q, Guo X Q. Study progress for new type functional materials of foam aluminum. Heat Treat Met, 2004, 29(6): 7 doi: 10.3969/j.issn.0254-6051.2004.06.003
|
[4] |
Reddy A C, Zitoun E. Tensile properties and fracture behavior of 6061/Al2O3 metal matrix composites fabricated by low pressure die casting process. Int J Mater Sci, 2011, 6(2): 147
|
[5] |
Wang M Y, Wang Z, Guo Z C. Preparation of electrolytic copper powders with high current efficiency enhanced by super gravity field and its mechanism. Trans Nonferrous Met Soc China, 2010, 20(6): 1154 doi: 10.1016/S1003-6326(09)60271-5
|
[6] |
張澤磊, 楊剛, 楊屹. 離心鑄造研究現狀. 鑄造技術, 2010, 31(11):1517
Zhang Z L, Yang G, Yang Y. Development status of centrifugal casting. Foundry Technol, 2010, 31(11): 1517
|
[7] |
Ramshaw C. The opportunities for exploiting centrifugal fields. Heat Recovery Syst CHP, 1993, 13(6): 493 doi: 10.1016/0890-4332(93)90003-E
|
[8] |
賈世忠. 重力場熱力學分析和重力化學勢. 大學化學, 1997, 12(5):21 doi: 10.3866/PKU.DXHX19970507
Jia S Z. Thermodynamic analysis of gravitational field and gravitational chemical potential. Univ Chem, 1997, 12(5): 21 doi: 10.3866/PKU.DXHX19970507
|
[9] |
Wang M Y, Wang Z, Gong X Z, et al. The intensification technologies to water electrolysis for hydrogen production - A review. Renew Sustain Energy Rev, 2014, 29: 573 doi: 10.1016/j.rser.2013.08.090
|
[10] |
邢海青, 郭占成, 王志, 等. 超重力場中水溶液的電化學反應特性. 高等學校化學學報, 2007, 28(9):1765 doi: 10.3321/j.issn:0251-0790.2007.09.045
Xing H Q, Guo Z C, Wang Z, et al. Electrochemical behavior of aqueous electrochemical reactions in super gravity field. Chem J Chin Univ, 2007, 28(9): 1765 doi: 10.3321/j.issn:0251-0790.2007.09.045
|
[11] |
Liu T, Guo Z C, Wang Z, et al. Effects of gravity on the electrodeposition and characterization of nickel foils. Int J Miner Metall Mater, 2011, 18(1): 59 doi: 10.1007/s12613-011-0400-6
|
[12] |
王明涌, 王志, 郭占成. 超重力技術: 電化學工業新契機. 工程研究——跨學科視野中的工程, 2015, 7(3):289
Wang M Y, Wang Z, Guo Z C. Supergravity technology: New opportunity for the advance of electrochemical industry. J Eng Stud, 2015, 7(3): 289
|
[13] |
Wang M Y, Wang Z, Guo Z C. Deposit structure and kinetic behavior of metal electrodeposition under enhanced gravity-induced convection. J Electroanal Chem, 2015, 744: 25 doi: 10.1016/j.jelechem.2015.03.003
|
[14] |
張林, 郭曉, 高建文, 等. 電磁攪拌對TiB2顆粒增強鋼組織和力學性能的影響. 金屬學報, 2020, 56(9):1239
Zhang L, Guo X, Gao J W, et al. Effect of electromagnetic stirring on microstructure and mechanical properties of TiB2 particle-reinforced steel. Acta Metall Sin, 2020, 56(9): 1239
|
[15] |
李軍成. 熔渣中釩、鈦和鈰化合物超重力分離技術基礎[學位論文]. 北京: 北京科技大學, 2015
Li J C. Technical Fundament on Separating Vanadium, Titanium and Cerium Compounds from Molten Slag by Super Gravity [Dissertation]. Beijing: University of Science and Technology Beijing, 2015
|
[16] |
溫小椿. 鉛鉍銀系合金物料超重力熔析分離的基礎研究[學位論文]. 北京: 北京科技大學, 2021
Wen X C. Fundamental Research on the Separation of Lead-Bismuth-Silver Alloys by Super-Gravity [Dissertation]. Beijing: University of Science and Technology Beijing, 2021
|
[17] |
李沖. 超重力處理鋼液及鋼渣基礎研究[學位論文]. 北京: 北京科技大學, 2017
Li C. Fundamental Research on Treatment of Molten Steel and Steelmaking Slag with Super Gravity [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
|
[18] |
Du Y, Gao J T, Lan X, et al. Recovery of rutile from Ti-Bearing blast furnace slag through phase transformation and super-gravity separation for dielectric material. Ceram Int, 2020, 46(7): 9885 doi: 10.1016/j.ceramint.2019.12.264
|
[19] |
劉曉龍, 韋宗慧, 馮超, 等. 磁流體制備及性質研究. 物理實驗, 2012, 32(8):6 doi: 10.3969/j.issn.1005-4642.2012.08.002
Liu X L, Wei Z H, Feng C, et al. Study on preparation and properties of magnetic fluid. Phys Exp, 2012, 32(8): 6 doi: 10.3969/j.issn.1005-4642.2012.08.002
|
[20] |
Gao J, Lu Y, Wang F, et al. Effects of super-gravity field on precipitation and growth kinetics of perovskite crystals in CaO?TiO2?SiO2?Al2O3?MgO melt. Ironmak Steelmak, 2017, 44(9): 692 doi: 10.1080/03019233.2016.1228740
|
[21] |
Li J C, Guo Z C, Gao J T, et al. Evaluation of isothermal separating perovskite phase from CaO?TiO2?SiO2?Al2O3?MgO melt by super gravity. Metall Mater Trans B, 2014, 45(4): 1171 doi: 10.1007/s11663-014-0062-7
|
[22] |
鄧君, 薛遜, 劉功國. 攀鋼釩鈦磁鐵礦資源綜合利用現狀與發展. 材料與冶金學報, 2007, 6(2):83 doi: 10.3969/j.issn.1671-6620.2007.02.001
Deng J, Xue X, Liu G G. Current situation and development of comprehensive utilization of vanadium-bearing titanomagnetite at Pangang. J Mater Metall, 2007, 6(2): 83 doi: 10.3969/j.issn.1671-6620.2007.02.001
|
[23] |
Gao J T, Zhong Y W, Guo Z C. Selective separation of perovskite (CaTiO3) from titanium bearing slag melt by super gravity. ISIJ Int, 2016, 56(8): 1352 doi: 10.2355/isijinternational.ISIJINT-2016-113
|
[24] |
Du Y, Gao J T, Lan X, et al. Selective precipitation and in situ separation of rutile crystals from titanium bearing slag melt in a super-gravity field. CrystEngComm, 2018, 20(27): 3868 doi: 10.1039/C8CE00678D
|
[25] |
Lu Y, Gao J T, Wang F Q, et al. Separation of anosovite from modified titanium-bearing slag melt in a reducing atmosphere by supergravity. Metall Mater Trans B, 2017, 48(2): 749 doi: 10.1007/s11663-016-0868-6
|
[26] |
Du Y, Gao J T, Lan X, et al. Sustainable recovery of ultrafine TiC powders from molten Ti-bearing slag under super-gravity field. J Clean Prod, 2021, 289: 125785 doi: 10.1016/j.jclepro.2021.125785
|
[27] |
Li J C, Guo Z C, Gao J T. Laboratory assessment of isothermal separation of V containing spinel phase from vanadium slag by centrifugal casting. Ironmak Steelmak, 2014, 41(9): 710 doi: 10.1179/1743281214Y.0000000185
|
[28] |
Lan X, Gao J T, Li Y, et al. Thermodynamics and kinetics of REEs in CaO?SiO2?CaF2?Ce2O3 system: A theoretical basis toward sustainable utilization of REEs in REE-Bearing slag. Ceram Int, 2021, 47(5): 6130 doi: 10.1016/j.ceramint.2020.10.192
|
[29] |
Lan X, Gao J T, Li Y, et al. Phase equilibria of CaO?SiO2?CaF2?P2O5?Ce2O3 system and formation mechanism of britholite. Ceram Int, 2021, 47(9): 11966 doi: 10.1016/j.ceramint.2021.01.038
|
[30] |
Lan X, Gao J T, Du Y, et al. Thermodynamics and crystallization kinetics of REEs in CaO?SiO2?Ce2O3 system. J Am Ceram Soc, 2020, 103(4): 2845 doi: 10.1111/jace.16946
|
[31] |
Lan X, Gao J T, Li Y, et al. A green method of respectively recovering rare earths (Ce, La, Pr, Nd) from rare-earth tailings under super-gravity. J Hazard Mater, 2019, 367: 473 doi: 10.1016/j.jhazmat.2018.12.118
|
[32] |
Li Y, Gao J T, Lan X, et al. Direct preparation of magnesium borate (Mg2B2O5) ceramic from boron-bearing slag: Super-gravity separation and microwave dielectric properties. J Eur Ceram Soc, 2021, 41(3): 1954 doi: 10.1016/j.jeurceramsoc.2020.11.004
|
[33] |
Li Y, Gao J T, Du Y, et al. Competitive crystallization of B, Si, and Mg and two-stage separation of olivine and suanite from boron-bearing slag in supergravity field. Miner Eng, 2020, 155: 106471 doi: 10.1016/j.mineng.2020.106471
|
[34] |
Li Y, Gao J T, Huang Z L, et al. A green method for selective crystallization and extraction of suanite (Mg2B2O5) crystals from boron bearing slag under super-gravity. Ceram Int, 2019, 45(8): 10961 doi: 10.1016/j.ceramint.2019.02.178
|
[35] |
侯耀斌, 洪陸闊, 孫彩嬌, 等. 釩鈦磁鐵礦堿熔低溫冶煉工藝研究. 鋼鐵釩鈦, 2020, 41(2):6
Hou Y B, Hong L K, Sun C J, et al. Study on alkali fusion process of V-Ti magnetite concentrate at lower temperature. Iron Steel Vanadium Titanium, 2020, 41(2): 6
|
[36] |
李軍, 吳恩輝, 侯靜, 等. 釩鈦鐵精礦煤基直接還原試驗研究. 礦產綜合利用, 2018(6):53 doi: 10.3969/j.issn.1000-6532.2018.06.0010
Li J, Wu E H, Hou J, et al. Study on direct reduction of vanadium and titanium iron ore concentrate. Multipurp Util Miner Resour, 2018(6): 53 doi: 10.3969/j.issn.1000-6532.2018.06.0010
|
[37] |
Guo L, Gao J T, Zhong S P, et al. Phosphorus migration mechanism between iron and high phosphorus gangue phase at high temperatures. J Iron Steel Res Int, 2019, 26(2): 113 doi: 10.1007/s42243-018-0079-2
|
[38] |
Tang H Q, Ma L, Wang J W, et al. Slag/metal separation process of Gas-reduced oolitic High-phosphorus iron ore fines. J Iron Steel Res Int, 2014, 21(11): 1009 doi: 10.1016/S1006-706X(14)60176-X
|
[39] |
趙志龍, 唐惠慶, 郭占成. 高磷鐵礦氣基還原冶煉低磷鐵. 北京科技大學學報, 2009, 31(8):964 doi: 10.3321/j.issn:1001-053X.2009.08.004
Zhao Z L, Tang H Q, Guo Z C. Dephosphorization of high-level phosphorus iron ore by gas-based reduction and melt separation. J Univ Sci Technol Beijing, 2009, 31(8): 964 doi: 10.3321/j.issn:1001-053X.2009.08.004
|
[40] |
Gao J T, Zhong Y W, Guo L, et al. Separation of iron phase and P-bearing slag phase from gaseous-reduced, high-phosphorous oolitic iron ore at 1473 K (1200 ℃) by super gravity. Metall Mater Trans B, 2016, 47(2): 1080 doi: 10.1007/s11663-015-0575-8
|
[41] |
Gao J T, Guo L, Zhong Y W, et al. Removal of phosphorus-rich phase from high-phosphorous iron ore by melt separation at 1573 K in a super-gravity field. Int J Miner Metall Mater, 2016, 23(7): 743 doi: 10.1007/s12613-016-1288-y
|
[42] |
Gao J T, Guo L, Guo Z C. Concentrating of iron, slag and apatite phases from high phosphorous iron ore gaseous reduction product at 1473 K by super gravity. ISIJ Int, 2015, 55(12): 2535 doi: 10.2355/isijinternational.ISIJINT-2015-416
|
[43] |
Gao J T, Lan X, Wang F Q, et al. Separation of rare earth and fluorite phases from Bayan obo ore at low temperature by super-gravity. ISIJ Int, 2018, 58(2): 364 doi: 10.2355/isijinternational.ISIJINT-2017-034
|
[44] |
Wang F Q, Gao J T, Lan X, et al. Direct concentration of iron, slag and britholite-(Ce, La, Pr, Nd) at 1473 K in a super gravitational field. ISIJ Int, 2017, 57(1): 200 doi: 10.2355/isijinternational.ISIJINT-2016-482
|
[45] |
Zhou H H, Liu G J, Zhang L Q, et al. Mineralogical and morphological factors affecting the separation of copper and arsenic in flash copper smelting slag flotation beneficiation process. J Hazard Mater, 2021, 401: 123293 doi: 10.1016/j.jhazmat.2020.123293
|
[46] |
周朝剛, 楊會澤, 艾立群, 等. 轉爐含磷鋼渣循環利用技術的研究現狀及展望. 鋼鐵, 2021, 56(2):22
Zhou C G, Yang H Z, Ai L Q, et al. Research status and prospect of recycling technology of converter slag containing phosphorus. Iron Steel, 2021, 56(2): 22
|
[47] |
Lan X, Gao J T, Huang Z L, et al. Rapid separation of copper phase and iron-rich phase from copper slag at low temperature in a super-gravity field. Metall Mater Trans B, 2018, 49(3): 1165 doi: 10.1007/s11663-018-1235-6
|
[48] |
Gao J T, Huang Z L, Wang Z W, et al. Recovery of crown zinc and metallic copper from copper smelter dust by evaporation, condensation and super-gravity separation. Sep Purif Technol, 2020, 231: 115925 doi: 10.1016/j.seppur.2019.115925
|
[49] |
Gao J, Zhong Y, Wang F, et al. Effect of super-gravity field on metal-slag separation. Ironmak Steelmak, 2017, 44(7): 492 doi: 10.1080/03019233.2016.1216631
|
[50] |
Wen X C, Guo L, Bao Q P, et al. Efficient separation of lead and antimony metals from the Pb?Sb alloy by super-gravity technology. J Alloys Compd, 2019, 806: 1012 doi: 10.1016/j.jallcom.2019.07.211
|
[51] |
Liu C, Qiu K Q. Separating lead-antimony alloy by fractional crystallization using directional lifting process. J Alloys Compd, 2015, 636: 282 doi: 10.1016/j.jallcom.2015.02.190
|
[52] |
許妍. 鉛銻合金的結晶分離研究[學位論文]. 長沙: 中南大學, 2013
Xu Y. Study on Crystallization Separation of Pb-Sb Alloy [Dissertation]. Changsha: Central South University, 2013
|
[53] |
Fu B B, Qiu K Q. Vacuum dynamic oxidation process for separating Pb?Sb alloy. Vacuum, 2018, 149: 31
|
[54] |
張國靖, 劉永成, 戴永年. 鉛銻合金真空蒸餾分離研究. 有色金屬(冶煉部分), 1989(4):21
Zhang G J, Liu Y C, Dai Y N. Study on vacuum distillation separation of lead-antimony alloy. Nonferrous Met (Extr Metall)
|
[55] |
Wen X C, Guo L, Bao Q P, et al. Separation of silver from bismuth melt in a centrifugal separator with zinc as an additive. Miner Eng, 2020, 157: 106548 doi: 10.1016/j.mineng.2020.106548
|
[56] |
Wen X C, Bao Q P, Guo L, et al. The introduction of super-gravity into optimization separation of bismuth and zinc from crude bismuth melt. Chem Eng Process Process Intensif, 2021, 160: 108266 doi: 10.1016/j.cep.2020.108266
|
[57] |
Wen X C, Yang Y R, Bao Q P, et al. A green method for extraction of Bi and Pb from bismuth-rich melt by super-gravity. Chem Eng Res Des, 2020, 164: 209 doi: 10.1016/j.cherd.2020.09.027
|
[58] |
Wen X, Guo L, Bao Q, et al. Rapid Removal of the Copper Impurity from Bismuth-Copper Alloy Melts via Super-Gravity Separation. Int J Miner Metall Mater, 2020: 1
|
[59] |
Wen X C, Guo L, Bao Q P, et al. Super-gravity field enrichment of silver and antimony contained in Pb–Ag–Sb melts //11th International Symposium on High-Temperature Metallurgical Processing. San Diego, 2020: 1001
|
[60] |
Hao J J, Wang Y S, Wu Y F, et al. Metal recovery from waste printed circuit boards: A review for current status and perspectives. Resour Conserv Recycl, 2020, 157: 104787 doi: 10.1016/j.resconrec.2020.104787
|
[61] |
Yang D Z, Chu Y Y, Wang J B, et al. Completely separating metals and nonmetals from waste printed circuit boards by slurry electrolysis. Sep Purif Technol, 2018, 205: 302 doi: 10.1016/j.seppur.2018.04.069
|
[62] |
Meng L, Wang Z, Zhong Y W, et al. Supergravity separation for recovering metals from waste printed circuit boards. Chem Eng J, 2017, 326: 540 doi: 10.1016/j.cej.2017.04.143
|
[63] |
Meng L, Guo L, Zhong Y W, et al. Concentration of precious metals from waste printed circuit boards using supergravity separation. Waste Manag, 2018, 82: 147 doi: 10.1016/j.wasman.2018.10.024
|
[64] |
Meng L, Wang Z, Zhong Y W, et al. Supergravity separation of Pb and Sn from waste printed circuit boards at different temperatures. Int J Miner Metall Mater, 2018, 25(2): 173 doi: 10.1007/s12613-018-1560-4
|
[65] |
Meng L, Zhong Y W, Wang Z, et al. Supergravity separation for Cu recovery and precious metal concentration from waste printed circuit boards. ACS Sustain Chem Eng, 2018, 6(1): 186 doi: 10.1021/acssuschemeng.7b02204
|
[66] |
Chen B, He J, Sun X, et al. Liquid-liquid phase separation of Fe?Cu?Pb alloy and its application in metal separation and recycling of waste printed circuit boards. Acta Metall Sin, 2019, 55(6): 751
|
[67] |
Guo L, Gao J T, Li C, et al. Removal of fine SiO2 composite inclusions from 304 stainless steel using super-gravity. ISIJ Int, 2020, 60(2): 238 doi: 10.2355/isijinternational.ISIJINT-2019-301
|
[68] |
Shi A J, Wang Z, Shi C B, et al. Supergravity-induced separation of oxide and nitride inclusions from inconel 718 superalloy melt. ISIJ Int, 2020, 60(2): 205 doi: 10.2355/isijinternational.ISIJINT-2019-321
|
[69] |
Song G Y, Song B, Guo Z C, et al. Separation of non-metallic inclusions from a Fe?Al?O melt using a super-gravity field. Metall Mater Trans B, 2018, 49(1): 34 doi: 10.1007/s11663-017-1099-1
|
[70] |
Li C, Gao J T, Wang Z, et al. Separation of fine Al2O3 inclusion from liquid steel with super gravity. Metall Mater Trans B, 2017, 48(2): 900 doi: 10.1007/s11663-016-0905-5
|
[71] |
孫士瞳, 郭占成, 唐惠慶, 等. 利用超重力分離鋁熔體中富鐵相. 中國稀土學報, 2012, 30:560
Sun S T, Guo Z C, Tang H Q, et al. Super-gravity separation of iron-rich phases from molten aluminum. J Chinese Rare Earth Soc, 2012, 30: 560
|
[72] |
Song G Y, Song B, Yang Z B, et al. Removal of inclusions from molten aluminum by supergravity filtration. Metall Mater Trans B, 2016, 47(6): 3435 doi: 10.1007/s11663-016-0775-x
|
[73] |
Moats M, Alagha L, Awuah-Offei K. Towards resilient and sustainable supply of critical elements from the copper supply chain: A review. J Clean Prod, 2021, 307: 127207 doi: 10.1016/j.jclepro.2021.127207
|
[74] |
Zhao L X, Guo Z C, Wang Z, et al. Removal of low-content impurities from Al by super-gravity. Metall Mater Trans B, 2010, 41(3): 505 doi: 10.1007/s11663-010-9376-2
|
[75] |
Guo L, Wen X C, Bao Q P, et al. Removal of tramp elements within 7075 alloy by super-gravity aided rheorefining method. Metals, 2018, 8(9): 701 doi: 10.3390/met8090701
|
[76] |
Contatori C, Domingues N I Jr, Barreto R L Jr, et al. Effect of Mg and Cu on microstructure, hardness and wear on functionally graded Al-19Si alloy prepared by centrifugal casting. J Mater Res Technol, 2020, 9(6): 15862 doi: 10.1016/j.jmrt.2020.11.050
|
[77] |
Meng L, Wang Z, Wang L, et al. Novel and efficient purification of scrap Al?Mg alloys using supergravity technology. Waste Manag, 2021, 119: 22 doi: 10.1016/j.wasman.2020.09.027
|
[78] |
Wang Z, Gao J T, Meng L, et al. Recovery of zinc from Zn–Al–Fe melt by super-gravity separation. ISIJ Int, 2018, 58(6): 1175 doi: 10.2355/isijinternational.ISIJINT-2017-561
|
[79] |
Wang Z, Gao J T, Shi A J, et al. Recovery of zinc from galvanizing dross by a method of super-gravity separation. J Alloys Compd, 2018, 735: 1997 doi: 10.1016/j.jallcom.2017.11.385
|
[80] |
Sun N J, Wang Z, Guo L, et al. Efficient separation of reinforcements and matrix alloy from aluminum matrix composites by supergravity technology. J Alloys Compd, 2020, 843: 155814 doi: 10.1016/j.jallcom.2020.155814
|
[81] |
Li J W, Guo Z C, Li J C, et al. Super gravity separation of purified Si from solvent refining with the Al?Si alloy system for solar grade silicon. Silicon, 2015, 7(3): 239 doi: 10.1007/s12633-014-9197-z
|
[82] |
Li J W, Guo Z C, Tang H Q, et al. Removal of impurities from metallurgical grade silicon by liquation refining method. High Temp Mater Process, 2013, 32(5): 503 doi: 10.1515/htmp-2012-0157
|
[83] |
Hu L, Wang Z, Gong X Z, et al. Purification of metallurgical-grade silicon by Sn?Si refining system with calcium addition. Sep Purif Technol, 2013, 118: 699 doi: 10.1016/j.seppur.2013.08.013
|
[84] |
Zhao L X, Wang Z, Guo Z C, et al. Low-temperature purification process of metallurgical silicon. Trans Nonferrous Met Soc China, 2011, 21(5): 1185 doi: 10.1016/S1003-6326(11)60841-8
|
[85] |
楊玉厚. 超重力對金屬凝固組織細化及元素偏析行為的基礎研究[學位論文]. 北京: 北京科技大學, 2018
Yang Y H. Fundamental Study on Solidification Structure Refinement and Elements Segregation of Metals by Super Gravity [Dissertation]. Beijing: University of Science and Technology Beijing, 2018
|
[86] |
Zhao L X, Guo Z C, Wang Z, et al. Influences of super-gravity field on aluminum grain refining. Metall Mater Trans A, 2010, 41(3): 670 doi: 10.1007/s11661-009-0130-9
|
[87] |
Shailesh P, Sundarrajan S, Komaraiah M. Optimization of process parameters of Al?Si alloy by centrifugal casting technique using taguchi design of experiments. Procedia Mater Sci, 2014, 6: 812 doi: 10.1016/j.mspro.2014.07.098
|
[88] |
Yang Y H, Song B, Yang Z B, et al. The refining mechanism of super gravity on the solidification structure of Al?Cu alloys. Materials, 2016, 9(12): 1001 doi: 10.3390/ma9121001
|
[89] |
Yang Y H, Song B, Cheng J, et al. Effect of super-gravity field on grain refinement and tensile properties of Cu?Sn alloys. ISIJ Int, 2018, 58(1): 98 doi: 10.2355/isijinternational.ISIJINT-2017-233
|
[90] |
Gan Z H, Wu H, Sun Y, et al. Influence of Co contents and super-gravity field on refinement of in situ ultra-fined fibers in Al?2.5Ni eutectic alloys. J Alloys Compd, 2020, 822: 153607 doi: 10.1016/j.jallcom.2019.153607
|
[91] |
Wu H, Wu C D, Lu Y H, et al. Toward enhanced strength and ductility of Al?14.5Si alloy via solidification under super-gravity field. Adv Eng Mater, 2020, 22(11): 2000360
|
[92] |
Rajan T P D, Pai B C. Formation of solidification microstructures in centrifugal cast functionally graded aluminium composites. Trans Indian Inst Met, 2009, 62(4-5): 383 doi: 10.1007/s12666-009-0067-0
|
[93] |
Chirita G, Soares D, Silva F S. Advantages of the centrifugal casting technique for the production of structural components with Al?Si alloys. Mater Des, 2008, 29(1): 20 doi: 10.1016/j.matdes.2006.12.011
|
[94] |
Fukui Y. Fundamental investigation of functionally gradient material manufacturing system using centrifugal force. JSME Int J Ser 3 Vib Control Eng Eng Ind, 1991, 34(1): 144
|
[95] |
Rajan T P D, Pillai R M, Pai B C. Centrifugal casting of functionally graded aluminium matrix composite components. Int J Cast Met Res, 2008, 21(1-4): 214 doi: 10.1179/136404608X361972
|
[96] |
Watanabe Y, Yamanaka N, Fukui Y. Wear behavior of Al?Al3Ti composite manufactured by a centrifugal method. Metall Mater Trans A, 1999, 30(12): 3253 doi: 10.1007/s11661-999-0235-1
|
[97] |
Huang X Y, Liu C M, Lü X J, et al. Aluminum alloy pistons reinforced with SiC fabricated by centrifugal casting. J Mater Process Technol, 2011, 211(9): 1540 doi: 10.1016/j.jmatprotec.2011.04.006
|
[98] |
Amanov A. Improvement in mechanical properties and fretting wear of Inconel 718 superalloy by ultrasonic nanocrystal surface modification. Wear, 2020, 446-447: 203208 doi: 10.1016/j.wear.2020.203208
|
[99] |
Zhao H W, Li J H, Guo S B, et al. Fast preparation of ZTA?TiC?FeCrNi cermets by high-gravity combustion synthesis. Ceram Int, 2017, 43(9): 6904 doi: 10.1016/j.ceramint.2017.02.112
|
[100] |
L?ffler J F, Bossuyt S, Peker A, et al. Eutectic isolation in Mg?Al?Cu?Li(?Y) alloys by centrifugal processing. Philos Mag, 2003, 83(24): 2797 doi: 10.1080/1478643031000122152
|
[101] |
L?ffler J F, Johnson W L. Crystallization of Mg?Al and Al-based metallic liquids under ultra-high gravity. Intermetallics, 2002, 10(11-12): 1167 doi: 10.1016/S0966-9795(02)00155-3
|
[102] |
Izadi H, Nolting A, Munro C, et al. Friction stir processing of Al/SiC composites fabricated by powder metallurgy. J Mater Process Technol, 2013, 213(11): 1900 doi: 10.1016/j.jmatprotec.2013.05.012
|
[103] |
Dong C G, Wang R C, Chen Y X, et al. Near-net shaped Al/SiCP composites via vacuum-pressure infiltration combined with gelcasting. Trans Nonferrous Met Soc China, 2020, 30(6): 1452 doi: 10.1016/S1003-6326(20)65310-9
|
[104] |
Benavente D, Garc??a del Cura M A, Fort R, et al. Thermodynamic modelling of changes induced by salt pressure crystallisation in porous media of stone. J Cryst Growth, 1999, 204(1-2): 168 doi: 10.1016/S0022-0248(99)00163-3
|
[105] |
Israelachvili J N. Intermolecular and Surface Forces. Amsterdam: Elsevier Press, 2011
|
[106] |
Zhang N, Wang Z, Guo L, et al. Rapid fabrication of W?Cu composites via low-temperature infiltration in supergravity fields. J Alloys Compd, 2019, 809: 151782 doi: 10.1016/j.jallcom.2019.151782
|
[107] |
Chang K, Gao J T, Wang Z, et al. Manufacturing 3-D open-cell aluminum foam via infiltration casting in a super-gravity field. J Mater Process Technol, 2018, 252: 705 doi: 10.1016/j.jmatprotec.2017.10.032
|
[108] |
Wang Z, Gao J T, Chang K, et al. Manufacturing of open-cell aluminum foams via infiltration casting in super-gravity fields and mechanical properties. RSC Adv, 2018, 8(29): 15933 doi: 10.1039/C7RA13689G
|
[109] |
常寬. 超重力滲流法制備多孔泡沫鋁材料[學位論文]. 北京: 北京科技大學, 2017
Chang K. Preparation of Porous Aluminum Foam by Infiltration Casting in a Super-Gravity Field [Dissertation]. Beijing: University of Science and Technology Beijing, 2017
|
[110] |
王明涌, 邢海青, 王志, 等. 超重力強化氯堿電解反應. 物理化學學報, 2008, 24(3):520 doi: 10.3866/PKU.WHXB20080330
Wang M Y, Xing H Q, Wang Z, et al. Investigation of chlor-alkali electrolysis intensified by super gravity. Acta Phys Chim Sin, 2008, 24(3): 520 doi: 10.3866/PKU.WHXB20080330
|
[111] |
Guo Z C, Gong Y P, Lu W C. Electrochemical studies of nickel deposition from aqueous solution in super-gravity field. Sci China Ser E Technol Sci, 2007, 50(1): 39 doi: 10.1007/s11431-007-0001-9
|
[112] |
Wang M Y, Wang Z, Gong X Z, et al. Progress toward electrochemistry intensified by using supergravity fields. ChemElectroChem, 2015, 2(12): 1879 doi: 10.1002/celc.201500333
|
[113] |
Atobe M, Hitose S, Nonaka T. Chemistry in centrifugal fields: Part 1. Electrooxidative polymerization of aniline. Electrochem Commun, 1999, 1(7): 278
|
[114] |
Atobe M, Murotani A, Hitose S, et al. Anodic polymerization of aromatic compounds in centrifugal fields. Electrochimica Acta, 2004, 50(4): 977 doi: 10.1016/j.electacta.2004.07.037
|
[115] |
Murotani A, Atobe M, Fuchigami T. Electrochemical copolymerization of aromatic compounds in centrifugal fields. J Electrochem Soc, 2005, 152(10): D161 doi: 10.1149/1.2007108
|
[116] |
Eftekhari A. Enhanced stability and conductivity of polypyrrole film prepared electrochemically in the presence of centrifugal forces. Synth Met, 2004, 142(1-3): 305 doi: 10.1016/j.synthmet.2003.08.002
|
[117] |
Liu T, Guo Z C, Wang Z, et al. Structure and corrosion resistance of nickel foils deposited in a vertical gravity field. Appl Surf Sci, 2010, 256(22): 6634 doi: 10.1016/j.apsusc.2010.04.062
|
[118] |
Wang M Y, Wang Z, Yu X T, et al. Facile one-step electrodeposition preparation of porous NiMo film as electrocatalyst for hydrogen evolution reaction. Int J Hydrog Energy, 2015, 40(5): 2173 doi: 10.1016/j.ijhydene.2014.12.022
|
[119] |
Du J P, Shao G J, Qin X J, et al. High specific surface area MnO2 electrodeposited under supergravity field for supercapacitors and its electrochemical properties. Mater Lett, 2012, 84: 13 doi: 10.1016/j.matlet.2012.06.059
|
[120] |
Liu T T, Shao G J, Ji M T. Electrodeposition of Ni(OH)2/Ni/graphene composites under supergravity field for supercapacitor application. Mater Lett, 2014, 122: 273 doi: 10.1016/j.matlet.2014.02.035
|
[121] |
高金濤, 郭占成, 李軍成. 一種超重力去除鋼水中非金屬夾雜物的方法: 中國專利, CN103602782A. 2014-02-26
Gao J T, Guo Z C, Li J C. Method for Removing Nonmetallic Inclusions in Molten Steel by Means of Supergravity: China Patent, CN103602782A. 2014-02-26
|
[122] |
郭占成, 郭磊, 溫小椿, 等. 一種超重力分離鉛銻合金的方法及裝置: 中國專利, CN109825719B. 2020-10-13
Guo Z C, Guo L, Wen X C, et al. Method and Device for Separating Lead-antimony Alloys by Supergravity: China Patent, CN109825719B. 2020-10-13)
|
[123] |
郭占成, 高金濤, 蘭茜, 等. 一種超重力低溫快速分離銅渣中金屬銅的方法及裝置: 中國專利, CN108165756B. 2019-03-29
Guo Z C, Gao J T, Lan X, et al. Method and Device for Achieving Low-temperature Quick Separating of Metallic Copper in Copper Slag Through Supergravity: China Patent, CN108165756B. 2019-03-29)
|
[124] |
郭占成, 李軍成, 高金濤. 一種超重力分離鈦渣中鈦資源的方法: 中國專利, CN103361451A. 2013-10-23
Guo Z C, Li J C, Gao J T. Method for Separating Titanium Resource in Titanium Slag Through Super Gravity: China Patent, CN103361451A. 2013-10-23
|
[125] |
Guo Z C, Meng L, Guo L, et al. Method and Apparatus for Retrieving Valuable Metals Step by Step from Waste Printed Circuit Board Particle: U. S. Patent, US20180187285A1. 2020-5-19
|
[126] |
郭占成, 王哲, 高金濤, 等. 一種超重力滲流制備通孔泡沫金屬的方法及裝置: 中國專利, CN107574329B. 2019-06-04
Guo Z C, Wang Z, Gao J T, et al. Method and Device for Preparing Porous Foam Metal Through Super-gravity Seepage: China Patent, CN107574329B. 2019-06-04
|